求函数的解析式四种方法,要解释还有例题

 我来答
ariarimimi
2013-08-22 · TA获得超过6605个赞
知道大有可为答主
回答量:2348
采纳率:100%
帮助的人:2866万
展开全部
楼主是要问高中还是初中的方法?
更多追问追答
追问
当然是高中的,,详细点啊,我不是太懂,
追答

求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。

(一) 待定系数法

待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

 

小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k/x (k≠0);f(x)为二次函数时,根据条件可设

  ①一般式:f(x)=ax2+bx+c(a≠0)

  ②顶点式:f(x)=a(x-h)2+k(a≠0)

  ③双根式:f(x)=a(x-x1)(x-x2)(a≠0)

 

(二)换元法

换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。

小结:①已知f[g(x)]是关于x的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x替换t,便得f(x)的解析式。

  注意:换元后要确定新元t的取值范围。

  ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。

 

(三)配凑法

已知复合函数的表达式,要求的解析式时,若表达式右边易配成的运算形式,则可用配凑法,使用配凑法时,要注意定义域的变化。

由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。

实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的内函数来表示出来,在通过整体换元。和换元法一样,最后结果要注明定义域。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式