(2010?鞍山)如图,?ABCD中,对角线AC,BD相交于点O,分别过D,C作DE∥OC,CE∥OD.(1)图中有若干对相
(2010?鞍山)如图,?ABCD中,对角线AC,BD相交于点O,分别过D,C作DE∥OC,CE∥OD.(1)图中有若干对相似三角形,请至少写出三对相似(不全等的)三角形...
(2010?鞍山)如图,?ABCD中,对角线AC,BD相交于点O,分别过D,C作DE∥OC,CE∥OD.(1)图中有若干对相似三角形,请至少写出三对相似(不全等的)三角形,并选择其中一对加以证明;(2)求证:DM=12OB.
展开
1个回答
展开全部
(1)解:相似三角形有△ABM∽△NDM∽△NCE,△AOM∽△ACE∽△EDM,△DNE∽△CNA等.
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△ABM∽△NDM,
∵CE∥OD,
∴△NDM∽△NCE,△AOM∽△ACE,
∴△ABM∽△NDM∽△NCE,
∵DE∥OC,
∴△EDM∽△AOM,△DNE∽△CNA,
∴△AOM∽△ACE∽△EDM;
∴相似三角形有△ABM∽△NDM∽△NCE,△AOM∽△ACE∽△EDM,△DNE∽△CNA;
(2)证明:∵四边形ABCD是平行四边形,
∴OB=OD,OA=OC,
又∵CE∥OD,
∴AM=ME,
∴OM=
CE,
∵CE∥OD,DE∥OC,
∴四边形DOCE为平行四边形,
∴CE=OD,
∴OM=
OD=
OB.
证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△ABM∽△NDM,
∵CE∥OD,
∴△NDM∽△NCE,△AOM∽△ACE,
∴△ABM∽△NDM∽△NCE,
∵DE∥OC,
∴△EDM∽△AOM,△DNE∽△CNA,
∴△AOM∽△ACE∽△EDM;
∴相似三角形有△ABM∽△NDM∽△NCE,△AOM∽△ACE∽△EDM,△DNE∽△CNA;
(2)证明:∵四边形ABCD是平行四边形,
∴OB=OD,OA=OC,
又∵CE∥OD,
∴AM=ME,
∴OM=
1 |
2 |
∵CE∥OD,DE∥OC,
∴四边形DOCE为平行四边形,
∴CE=OD,
∴OM=
1 |
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询