设数{an}的前n项和为Sn=4-14n?1(n∈N+),数{bn}为等差数列,且b1=a1,a2(b2-b1)=a1(I)求数列{an}、
设数{an}的前n项和为Sn=4-14n?1(n∈N+),数{bn}为等差数列,且b1=a1,a2(b2-b1)=a1(I)求数列{an}、{bn}的通项公式;(II)设...
设数{an}的前n项和为Sn=4-14n?1(n∈N+),数{bn}为等差数列,且b1=a1,a2(b2-b1)=a1(I)求数列{an}、{bn}的通项公式;(II)设cn=anbn,求数列{cn}的前n项和Tn.
展开
展开全部
解答:解(Ⅰ)由数列{an}的前n项和为Sn=4?
得:an=Sn?Sn?1=4?
?4+
=
(n≥2)
a1=S1=4-1=3(n=1)
∴an=
(n∈N*)(3分)
b1=a1=3,a2(b2-b1)=a1?
(b2?b1)=3∴b2-b1=4
数列{bn}为等差数列,
所以bn=b1+(n-1)4=4n-1(16分)
(Ⅱ)设cn=anbn=
Tn=
+
++
+
①4Tn=4?
+
+
+
②(9分)
②-①3Tn=4×9+3×4(
+
++
+
)?
Tn=
?
?
或
?
或
?
?
(12分)
1 |
4n?1 |
得:an=Sn?Sn?1=4?
1 |
4n?1 |
1 |
4n?2 |
3 |
4n?1 |
a1=S1=4-1=3(n=1)
∴an=
3 |
4n?1 |
b1=a1=3,a2(b2-b1)=a1?
3 |
4 |
数列{bn}为等差数列,
所以bn=b1+(n-1)4=4n-1(16分)
(Ⅱ)设cn=anbn=
3(4n?1) |
4n?1 |
3×3 |
1 |
3×7 |
4 |
3(4n?5) |
4n?1 |
3(4n?1) |
4n?1 |
3×3 |
1 |
3×7 |
1 |
3×11 |
41 |
3(4n?5) |
4n?3 |
3(4n?1) |
4n?2 |
②-①3Tn=4×9+3×4(
1 |
1 |
1 |
41 |
1 |
4n?3 |
1 |
4n?2 |
3(4n?1) |
4n?1 |
52 |
3 |
1 |
3?4n?3 |
(4n?1) |
4n?1 |
52 |
3 |
48n+52 |
3?4n |
52 |
3 |
n |
4n?2 |
13 |
3?4n?1 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询