如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿
如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为xs....
如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.(1)当x=______s时,DE⊥AB;(2)求在点E运动过程中,y与x之间的函数关系式及点E运动路线的长;(3)当△BEF为等腰三角形时,求x的值.
展开
2个回答
展开全部
解:(1)∵∠C=90°,AC=BC,
∴∠A=∠B=45°,
∵DE⊥AB,
∴∠DEA=90°,
∵AD=3,
由勾股定理得:AE=
,
故答案为:
.
(2)∵在△ABC中,∠C=90°,AC=BC=4.
∴∠A=∠B=45°,
AB=4
,
∴∠ADE+∠AED=135°,
又∵∠DEF=45°,
∴∠BEF+∠AED=135°,
∴∠ADE=∠BEF,
∴△ADE∽△BEF,
∴
=
,
∴
=
,
∴y=-
x2+
x,
∴y=-
x2+
∴∠A=∠B=45°,
∵DE⊥AB,
∴∠DEA=90°,
∵AD=3,
由勾股定理得:AE=
3 |
2 |
2 |
故答案为:
3 |
2 |
2 |
(2)∵在△ABC中,∠C=90°,AC=BC=4.
∴∠A=∠B=45°,
AB=4
2 |
∴∠ADE+∠AED=135°,
又∵∠DEF=45°,
∴∠BEF+∠AED=135°,
∴∠ADE=∠BEF,
∴△ADE∽△BEF,
∴
AD |
BE |
AE |
BF |
∴
3 | ||
4
|
x |
y |
∴y=-
1 |
3 |
4 |
3 |
2 |
∴y=-
1 |
3 |
4 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|