已知集合M是同时满足下列两个性质的函数f(x)的全体:①f(x)在其定义域上是单调函数;②在f(x)的定

已知集合M是同时满足下列两个性质的函数f(x)的全体:①f(x)在其定义域上是单调函数;②在f(x)的定义域内存在闭区间[a,b],使得f(x)在[a,b]上的最小值是a... 已知集合M是同时满足下列两个性质的函数f(x)的全体:①f(x)在其定义域上是单调函数;②在f(x)的定义域内存在闭区间[a,b],使得f(x)在[a,b]上的最小值是a2,最大值是b2.请解答以下问题:(1)判断函数g(x)=-x3是否属于集合M?并说明理由,若是,请找出满足②的闭区间[a,b];(2)若函数h(x)=x?1+t∈M,求实数t的取值范围. 展开
 我来答
壶中6386
推荐于2016-12-01 · TA获得超过132个赞
知道答主
回答量:193
采纳率:75%
帮助的人:66.1万
展开全部
(1)函数g(x)=-x3的定义域为 R,g′(x)=-3x2≤0 (仅在x=0时取等号),
故函数g(x)在R上是减函数,故满足条件①.
若g(x)∈M,当x∈[a,b]时,
g(a)=
b
2
g(b)=
a
2
a<b
,即
?a3
b
2
?b3
a
2
a<b
,解得
a=?
2
2
b=
2
2
,故满足条件②的闭区间为[-
2
2
2
2
].
由此可得,g(x)属于集合M.
(2)函数h(x)的定义域是[1,+∞),当x>1时,h′(x)=
1
2
x?1
>0
,故函数h(x)在[1,+∞)上是增函数,…(10分)
若h(x)∈M,则存在a,b∈[1,+∞),且a<b,使得h(a)=
a
2
,h(b)=
b
2
,即a?2
a?1
?2t=0
,且b?2
b?1
?2t=0
,…(12分)
x?1
=y(x≥1)
,则y≥0,
于是关于y的方程y2-2y+1-2t=0在[0,+∞)上有两个不等的实根,…(14分)
记u(y)=y2-2y+1-2t,∴
△>0
u(0)≥0.
,∴t∈(0,
1
2
]
.…(16分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式