交换积分次序的基本具体步骤
交换积分次序的方法:
1、先画出积分区域的草图,并解出联立方程的交点坐标;
2、尽可能一次性地积分积出来最好,也就是说,积分区域最好是一个联通域,在这个联通域内,不需要将图形分块。
就是一次性先从左到右然后从上到下积分,或一次性先从上到下然后从左到右积分。
3、有时候不得不将图形切割成几小块,这是有被积函数的形式决定的。
4、这类题目,都是先把积分域画出来,再交换积分变量如第一题,把积分域画出来就是阴影部分。
5、至于如何画积分域,先对第一积分变量y,画出曲线y=根号x和y=1/x;再画第二积分变量x的取值范围x=1和x=2,即可得到积分域 其次交换积分次序。
扩展资料
分部积分
分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。
它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂三指”。
分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分。
1、第一步,作出积分区域
2、第二步,看是先对x还是先对y积分,如果,先对x积分,则作一条平行于x轴的直线穿过积分区域,与积分区域的交点就是积分上下限;同理,如果是先对y积分,就作一条平行于y轴的直线穿过积分上下限。
3、交换积分次序的时候,根据积分区域的不同,可能会涉及到,把两个积分合成一个积分,也可能会把一个积分分成两个积分,具体依积分区域而定。
扩展资料:
1、不定积分是在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
2、这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。
参考资料:百度百科---不定积分