怎么用swig实现在python中继承C++接口类
展开全部
你找个工具将这个接口API,自动转换成python版本的就可以了。好象是SWIG和Boost。 这两个以前看过,偶尔还试过几次。之所以建议你用自动工具,就是因为python对于C 扩展麻烦些,对于C语言接口可以使用ctypes和cython简单解决。不过C 如果用这些方法有时候被很麻烦。
boost在linux里会经常用到,在windows下也可以使用。SWIG在一般的教程里都会提及到。SIP也是最近出名的。
下面是一些参考资料,搜索来的。
=== 使用工具进行扩展 ===
虽然扩展过程并不复杂,但也可以使用许多已知的工具简化扩展过程。
(1) SWIG
由David Beazley创建,是一个自动的扩展构造工具。它读入注释的C/C 头文件,为python、tcl、perl等多种脚本语言产生wrap代码。SWIG可以包装大量C 特性到Python的扩展模块中。
评价:swig简单,可以支持多种脚本文件,但支持的c 特性不完备。
(2) SIP
由Phil Thompson创建,是一个C 模块构造器,专门为C 的类创造wrapper。它曾经被用于创建PyQt和PyKDE扩展模块,因此比较出名。
评价:支持C 特征很齐全,但比较复杂。
(3) bgen
该工具被包含在标准Python发布包中的模块构建工具集里,由Jack Jansen维护。它用于产生在Macintosh版本可用的Python扩展模块。
(4) pyfort
由Paul dubois创建,用来产生Fortran语言生成的扩展模块。
(5) cxx
也由Paul Dubois创建,甫俯颠谎郯荷奠捅订拉是一个库,为Python的C 扩展提供了友好的API。Cxx允许将许多python对象(如list和tuple)使用到STL的运算中。库也提供了C 异常处理到python异常处理的转化。
(6) WrapPy
由Greg Couch创建,通过读入C 头文件来产生扩展模块。
(7) Boost Python Library
由David Abrahams创建。该库提供了更多与众不同的C wrap到python扩展中,而只需要对要扩展的C 类写很少的附加信息。
评价:Boost为C 提供了许多实用的库,如Regex(正则表达式库)、Graph(图组件和算法)、concept check(检查泛型编程中的concept)、Thread(可移植的C 多线程库)、Python(把C 类和函数映射到Python之中)、Pool(内存池管理)等等。
Boost总体来说是实用价值很高,质量很高的库。并且强调对跨平台的支持。但是Boost中也有很多是实验性质的东西,在实际的开发中实用需要谨慎。
boost.python支持的c 特性较多,但是比较复杂。
boost在linux里会经常用到,在windows下也可以使用。SWIG在一般的教程里都会提及到。SIP也是最近出名的。
下面是一些参考资料,搜索来的。
=== 使用工具进行扩展 ===
虽然扩展过程并不复杂,但也可以使用许多已知的工具简化扩展过程。
(1) SWIG
由David Beazley创建,是一个自动的扩展构造工具。它读入注释的C/C 头文件,为python、tcl、perl等多种脚本语言产生wrap代码。SWIG可以包装大量C 特性到Python的扩展模块中。
评价:swig简单,可以支持多种脚本文件,但支持的c 特性不完备。
(2) SIP
由Phil Thompson创建,是一个C 模块构造器,专门为C 的类创造wrapper。它曾经被用于创建PyQt和PyKDE扩展模块,因此比较出名。
评价:支持C 特征很齐全,但比较复杂。
(3) bgen
该工具被包含在标准Python发布包中的模块构建工具集里,由Jack Jansen维护。它用于产生在Macintosh版本可用的Python扩展模块。
(4) pyfort
由Paul dubois创建,用来产生Fortran语言生成的扩展模块。
(5) cxx
也由Paul Dubois创建,甫俯颠谎郯荷奠捅订拉是一个库,为Python的C 扩展提供了友好的API。Cxx允许将许多python对象(如list和tuple)使用到STL的运算中。库也提供了C 异常处理到python异常处理的转化。
(6) WrapPy
由Greg Couch创建,通过读入C 头文件来产生扩展模块。
(7) Boost Python Library
由David Abrahams创建。该库提供了更多与众不同的C wrap到python扩展中,而只需要对要扩展的C 类写很少的附加信息。
评价:Boost为C 提供了许多实用的库,如Regex(正则表达式库)、Graph(图组件和算法)、concept check(检查泛型编程中的concept)、Thread(可移植的C 多线程库)、Python(把C 类和函数映射到Python之中)、Pool(内存池管理)等等。
Boost总体来说是实用价值很高,质量很高的库。并且强调对跨平台的支持。但是Boost中也有很多是实验性质的东西,在实际的开发中实用需要谨慎。
boost.python支持的c 特性较多,但是比较复杂。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询