
初中数学论文 联系生活或初二课本 1500字以上 限一天!!!!!
2个回答
2013-08-25
展开全部
摘要:数学新课程标准的核心理念是“以人为本”,充分体现“人人学有价值的数学,人人都能获得必需的数学”,“不同的人在数学上得到不同的发展”。新课程的实施对教师提出新的要求,赋予了新的历史重任,教师面临更大的考验与挑战,需要教师自身不断努力、成长与发展。在探索课堂教学的实践中,每个人都有自己的认识和体会。
关键词:数学;新课程标准;主题;课堂教学
课堂教学是一种师生双边参与的动态变化的过程,每一个学生都是生动、独立的个体,是课堂上主动求知、主动探索的主体;而教师是这个变化过程的设计者、组织者、引导者和合作者,是为学生服务的。在教学过程中,真正做到“以学生为本”,提高课堂45分钟效率,我的体会是--精心的进行合理、有效的课堂教学设计,使教师的教案符合学生的实际情况,而不是学生适应教师的教案。在课堂教学进程安排上,在以“目标──策略──评价”为主线安排教学进程的同时,进行“活动──体验──表现”这一新进程。关注学生的主动参与,让学生在观察、操作、讨论、质疑、探究中,在情感的体验中学习知识,完善人格。
1 “身边的数学”与“身边的生活”的互相渗透
在课堂教学过程中,我们要按照学生的认知规律,逐步展示知识的形成过程,“化简”书本知识,把“身边的数学”引入课堂,再把数学知识引入“身边的生活”,用好用活每一篇教材。
1.1 让生活走进数学课堂
引用学生熟悉的现实生活作为一堂课的开幕式,教会学生去观察生活,领悟生活中的数学因素。例如,在初中《代数》的第一章有理数的引人。举一个事例,一辆汽车从车站出发,沿公路向东行驶10千米,接着掉转车头向北行驶10千米,问这辆汽车在什么位置?对于这个简单问题,当然学生不难作出回答,但问及如何用数学式了表达这辆汽车的位置变化过程,学生就感到茫然了,趁学生构成忌于求知的心理状态之时机切人新裸课题,“为了满足实际需要,我们必须把已经学习过的算术数扩充到有理数。”例如,在学习“同类项”一节课时,可通过设计情境:准备一小袋零钱(有1角,2角,5角,1元),请一位同学来数数一共有多少钱?在情境中渗透分类的数学思想,从而引入新课。再如学习“图形的旋转”可以向学生展示生活中的钟表、电风扇叶片、大风车、自行车车轮等,引起学生学习数学兴趣,使数学“生活化”;学生这节课后,请学生应用所学的旋转设计一个广告图案,并为设计书写说明,这又使得生活“数学化”了。
1.2 让数学回归生活
现代社会里,“数学不仅能够帮助我们在经营中获利,而且,它能给予我们能力,包括直观思维、逻辑推理、精确计算,以及结论的明确无误”。例如一个人要成立一家新公司,由于业务关系,急需一辆汽车,但又因资金问题无力购买,决定暂租一辆汽车使用。现有两家出租车公司供选择,两家出租车公司条件不同,租哪家的更合算?一家的出租条件是“每月付给司机1000元工资,另外每百公里付10元汽油费”;另一家公司只按行程算账,出租条件是“每百公里付140元的费用”。这就要求新公司老板根据自身业务用车情况(里程)运用数学的知识去选择有利于自己的出租车公司。足以说明数学并不是远离生活的抽象理论,而是生活中必不可少的知识──让数学回归生活,以激发学生学习的兴趣。
数学新课程标准倡导课程和教学的发展性,强调“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”。因此,我认为在引导学生进行数学学习的过程中,从学生认知发生、发展的规律出发,提出思考的途径,随着学生的思路层层递进,把数学条理化,符合学生的认知规律,活泼多变,向学生渗透数学来源于生活实践,又可服务于生活实践。
2 创建师生平等的课堂学习环境,形成“学习共同体”
在教学中,我们不应让每个学习者去等待知识的传授,而应让他们基于自己与世界相互作用的独特经验去主动建构自己的知识,通过告之他人以修正自己的认知经验。
教育过程是教育者和受教育者共同参与和完成的实践活动,是师生互动、教学相长的双向作用过程,要有效地完成教育过程,教师和学生都必须充分发挥自己的主观能动性,教师的主导作用主要反映在教学的全过程,如精心设计导入,安排好教学的层次,精心挑选训练题进行小结,注意气氛反馈,重视教具的使用等。但在学的过程中,教师是客体。而学生是主体,教学中要敢于“放”,让学生动脑、动口、动手、积极地学。如课本让学生看,概念让学生抽象得出,思路让学生讲,疑难让学生议,规律让学生找,结论让学生得,错误让学生析,小结让学生做。要让学生勇于发表自己的不同见解,敢于提出质疑。决定学的结果如何,学生的作用是内因,教师的作用是外因,只有学生充分发挥自己的聪明才智,进行科学的思维和积极的创新,才能使知识内化和升华为个人的质。因此,教师要把学生作为真正的教育主体,以学生为出发点和归宿,在课堂教学中,实行民主的教育和管理方式,营造充满民主的学习氛围,鼓励学生求异创新、敢于提问,允许有不同的答察。教师应改变传统的一问一答模武。避免学生的思想处于“等待解答”状态,达到“发现──创新”的目的。
3 把数学文化渗入数学课堂教学
数学这门学问是完美而井然有序的理论体系,这一体系并非一开始就是那么完美无缺的,为了创建这个体系很多先哲进行了大量的努力,在不断探索的过程中历经了千辛万苦,另一方面,在这个进程中也感受到在很多发现和发明中的无穷乐趣,所以在学习数学中,也追踪一下相同的过程,学习数学文化,使我们一开始就能够从内心深处感受到数学是一门趣味性很深的学问。在数学课堂上无目标地装知识,不会产生学习的激情,而适当地渗透一些数学文化,将使数学课堂不再像嚼沙子一样枯燥无味。
例如在学习完四边形一章后,向学生介绍《精巧的蜂房结构》,介绍蜜蜂在数学与建筑学方面的贡献,数学家证明了蜂房是一种最经济的的形状,在其它条件相同的情况下,这种形状的容积最大,所消耗的材料最少,引发学生学习数学的兴趣,引导学生思考许多尖端的科技都是从自然界中得到启发,激发学生热爱自然,保护生态平衡,渗透从自然生活中提练数学知识的思想。
4 设计多样的开放式的试题,采用开放动态的课堂学习评价
传统的评价方法往往以纸笔考试为主,简单地以考试结果对学生进行分类,过分注重分数,强调共性和一般趋势,而忽略了个体差异和个性化发展的价值,忽略了对实践能力、创新精神、心理素质以及情绪、态度和习惯等综合素质考查。在新课程理念的指导下,立足于全面启迪学生的隐性智力潜力与可持续发展的教学理念,通过积极主动的探索与思考,初步采用一种开放动态的数学学习评价新模式。
相对于传统评价方法的单一性与组织形式的封闭性,在探索新的评价模式过程中,多尝试采用操作题、口试题、创意设计、课题报告等灵活多样、开放的评价手段与方法,来关注学生个性化发展的状况,具体直观地描述学生发展的独特性和差异性,减轻学生的压力,突显其学习和发展的过程,突显评价的激励作用,加强对学生能力和素质的评价,力争全面描述学生的发展状况。
4.1 操作性题
关键词:数学;新课程标准;主题;课堂教学
课堂教学是一种师生双边参与的动态变化的过程,每一个学生都是生动、独立的个体,是课堂上主动求知、主动探索的主体;而教师是这个变化过程的设计者、组织者、引导者和合作者,是为学生服务的。在教学过程中,真正做到“以学生为本”,提高课堂45分钟效率,我的体会是--精心的进行合理、有效的课堂教学设计,使教师的教案符合学生的实际情况,而不是学生适应教师的教案。在课堂教学进程安排上,在以“目标──策略──评价”为主线安排教学进程的同时,进行“活动──体验──表现”这一新进程。关注学生的主动参与,让学生在观察、操作、讨论、质疑、探究中,在情感的体验中学习知识,完善人格。
1 “身边的数学”与“身边的生活”的互相渗透
在课堂教学过程中,我们要按照学生的认知规律,逐步展示知识的形成过程,“化简”书本知识,把“身边的数学”引入课堂,再把数学知识引入“身边的生活”,用好用活每一篇教材。
1.1 让生活走进数学课堂
引用学生熟悉的现实生活作为一堂课的开幕式,教会学生去观察生活,领悟生活中的数学因素。例如,在初中《代数》的第一章有理数的引人。举一个事例,一辆汽车从车站出发,沿公路向东行驶10千米,接着掉转车头向北行驶10千米,问这辆汽车在什么位置?对于这个简单问题,当然学生不难作出回答,但问及如何用数学式了表达这辆汽车的位置变化过程,学生就感到茫然了,趁学生构成忌于求知的心理状态之时机切人新裸课题,“为了满足实际需要,我们必须把已经学习过的算术数扩充到有理数。”例如,在学习“同类项”一节课时,可通过设计情境:准备一小袋零钱(有1角,2角,5角,1元),请一位同学来数数一共有多少钱?在情境中渗透分类的数学思想,从而引入新课。再如学习“图形的旋转”可以向学生展示生活中的钟表、电风扇叶片、大风车、自行车车轮等,引起学生学习数学兴趣,使数学“生活化”;学生这节课后,请学生应用所学的旋转设计一个广告图案,并为设计书写说明,这又使得生活“数学化”了。
1.2 让数学回归生活
现代社会里,“数学不仅能够帮助我们在经营中获利,而且,它能给予我们能力,包括直观思维、逻辑推理、精确计算,以及结论的明确无误”。例如一个人要成立一家新公司,由于业务关系,急需一辆汽车,但又因资金问题无力购买,决定暂租一辆汽车使用。现有两家出租车公司供选择,两家出租车公司条件不同,租哪家的更合算?一家的出租条件是“每月付给司机1000元工资,另外每百公里付10元汽油费”;另一家公司只按行程算账,出租条件是“每百公里付140元的费用”。这就要求新公司老板根据自身业务用车情况(里程)运用数学的知识去选择有利于自己的出租车公司。足以说明数学并不是远离生活的抽象理论,而是生活中必不可少的知识──让数学回归生活,以激发学生学习的兴趣。
数学新课程标准倡导课程和教学的发展性,强调“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”。因此,我认为在引导学生进行数学学习的过程中,从学生认知发生、发展的规律出发,提出思考的途径,随着学生的思路层层递进,把数学条理化,符合学生的认知规律,活泼多变,向学生渗透数学来源于生活实践,又可服务于生活实践。
2 创建师生平等的课堂学习环境,形成“学习共同体”
在教学中,我们不应让每个学习者去等待知识的传授,而应让他们基于自己与世界相互作用的独特经验去主动建构自己的知识,通过告之他人以修正自己的认知经验。
教育过程是教育者和受教育者共同参与和完成的实践活动,是师生互动、教学相长的双向作用过程,要有效地完成教育过程,教师和学生都必须充分发挥自己的主观能动性,教师的主导作用主要反映在教学的全过程,如精心设计导入,安排好教学的层次,精心挑选训练题进行小结,注意气氛反馈,重视教具的使用等。但在学的过程中,教师是客体。而学生是主体,教学中要敢于“放”,让学生动脑、动口、动手、积极地学。如课本让学生看,概念让学生抽象得出,思路让学生讲,疑难让学生议,规律让学生找,结论让学生得,错误让学生析,小结让学生做。要让学生勇于发表自己的不同见解,敢于提出质疑。决定学的结果如何,学生的作用是内因,教师的作用是外因,只有学生充分发挥自己的聪明才智,进行科学的思维和积极的创新,才能使知识内化和升华为个人的质。因此,教师要把学生作为真正的教育主体,以学生为出发点和归宿,在课堂教学中,实行民主的教育和管理方式,营造充满民主的学习氛围,鼓励学生求异创新、敢于提问,允许有不同的答察。教师应改变传统的一问一答模武。避免学生的思想处于“等待解答”状态,达到“发现──创新”的目的。
3 把数学文化渗入数学课堂教学
数学这门学问是完美而井然有序的理论体系,这一体系并非一开始就是那么完美无缺的,为了创建这个体系很多先哲进行了大量的努力,在不断探索的过程中历经了千辛万苦,另一方面,在这个进程中也感受到在很多发现和发明中的无穷乐趣,所以在学习数学中,也追踪一下相同的过程,学习数学文化,使我们一开始就能够从内心深处感受到数学是一门趣味性很深的学问。在数学课堂上无目标地装知识,不会产生学习的激情,而适当地渗透一些数学文化,将使数学课堂不再像嚼沙子一样枯燥无味。
例如在学习完四边形一章后,向学生介绍《精巧的蜂房结构》,介绍蜜蜂在数学与建筑学方面的贡献,数学家证明了蜂房是一种最经济的的形状,在其它条件相同的情况下,这种形状的容积最大,所消耗的材料最少,引发学生学习数学的兴趣,引导学生思考许多尖端的科技都是从自然界中得到启发,激发学生热爱自然,保护生态平衡,渗透从自然生活中提练数学知识的思想。
4 设计多样的开放式的试题,采用开放动态的课堂学习评价
传统的评价方法往往以纸笔考试为主,简单地以考试结果对学生进行分类,过分注重分数,强调共性和一般趋势,而忽略了个体差异和个性化发展的价值,忽略了对实践能力、创新精神、心理素质以及情绪、态度和习惯等综合素质考查。在新课程理念的指导下,立足于全面启迪学生的隐性智力潜力与可持续发展的教学理念,通过积极主动的探索与思考,初步采用一种开放动态的数学学习评价新模式。
相对于传统评价方法的单一性与组织形式的封闭性,在探索新的评价模式过程中,多尝试采用操作题、口试题、创意设计、课题报告等灵活多样、开放的评价手段与方法,来关注学生个性化发展的状况,具体直观地描述学生发展的独特性和差异性,减轻学生的压力,突显其学习和发展的过程,突显评价的激励作用,加强对学生能力和素质的评价,力争全面描述学生的发展状况。
4.1 操作性题
2013-08-25
展开全部
初中数学小论文
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
数学小论文:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
数学小论文:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询