这个行列式怎么解?
3个回答
展开全部
一般情形: Dn =
a+b a 0 ... 0 0
b a+b a ... 0 0
0 b a+b ... 0 0
... ... ...
0 0 0 ... a+b a
0 0 0 ... b a+b
解: 按第1列展开
Dn=(a+b)D(n-1)-abD(n-2)
所以
Dn-aD(n-1)
= b(D(n-1)-aD(n-2))
= b^2(D(n-2)-aD(n-3))
= ...
= b^(n-2)(D2-aD1)
= b^(n-2)[(a+b)^2-ab - a(a+b)]
= b^(n-2)[a^2+ab+b^2-a^2-ab)]
= b^n.
即有 Dn = b^n+aD(n-1)
由于 Dn = Dn^T(转置行列式)
所以也有 Dn = a^n+bD(n-1)
当a≠b时, 两式消去Dn-1得 Dn = [a^(n+1)-b^(n+1)]/(a-b)
当a=b时,
Dn
= a^n+aD(n-1) = a^n+a(a^(n-1)+aD(n-2))
= 2a^n+a^2D(n-2)
= ...
= (n-1)a^n+a^(n-1)D1
= (n+1)a^n.
a+b a 0 ... 0 0
b a+b a ... 0 0
0 b a+b ... 0 0
... ... ...
0 0 0 ... a+b a
0 0 0 ... b a+b
解: 按第1列展开
Dn=(a+b)D(n-1)-abD(n-2)
所以
Dn-aD(n-1)
= b(D(n-1)-aD(n-2))
= b^2(D(n-2)-aD(n-3))
= ...
= b^(n-2)(D2-aD1)
= b^(n-2)[(a+b)^2-ab - a(a+b)]
= b^(n-2)[a^2+ab+b^2-a^2-ab)]
= b^n.
即有 Dn = b^n+aD(n-1)
由于 Dn = Dn^T(转置行列式)
所以也有 Dn = a^n+bD(n-1)
当a≠b时, 两式消去Dn-1得 Dn = [a^(n+1)-b^(n+1)]/(a-b)
当a=b时,
Dn
= a^n+aD(n-1) = a^n+a(a^(n-1)+aD(n-2))
= 2a^n+a^2D(n-2)
= ...
= (n-1)a^n+a^(n-1)D1
= (n+1)a^n.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
庭田科技
2024-11-14 广告
2024-11-14 广告
LMS Test.Lab 是一款测试分析软件,专为物理测量和动态测试需求设计,广泛应用于噪声、振动和耐久性(NVH)分析。LMS Test.Lab集成了数据采集、信号处理和多种分析工具,能够帮助工程师在产品设计和测试过程中高效识别并解决振动...
点击进入详情页
本回答由庭田科技提供
展开全部
r2-r1、r3-r1、r4-r1
行列式=|1+x 1 1 1|
-x -x 0 0
-x 0 y 0
-x 0 0 -y
r1+r2/x-r3/y+r4/y
=|1+x-1+x/y-x/y 0 0 0|
-x -x 0 0
-x 0 y 0
-x 0 0 -y
=x*(-x)*y*(-y)
=(xy)^2
行列式=|1+x 1 1 1|
-x -x 0 0
-x 0 y 0
-x 0 0 -y
r1+r2/x-r3/y+r4/y
=|1+x-1+x/y-x/y 0 0 0|
-x -x 0 0
-x 0 y 0
-x 0 0 -y
=x*(-x)*y*(-y)
=(xy)^2
追问
懂了,谢啦
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
试一下分块矩阵
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询