展开成余弦级数
1个回答
展开全部
这是傅里叶余弦级数。
原理是先将f偶函数化,然后写成傅里叶级数。
f偶函数化之后得到的是(-pi,pi)上的函数,恰好是2pi长,因此周期化之后pi是连续点。
所以在0,pi处,和函数的值都等于f的函数值。
而在1处,f不连续,和函数收敛到f左右极限的均值,为(1+2)/2
故答案选择C
原理是先将f偶函数化,然后写成傅里叶级数。
f偶函数化之后得到的是(-pi,pi)上的函数,恰好是2pi长,因此周期化之后pi是连续点。
所以在0,pi处,和函数的值都等于f的函数值。
而在1处,f不连续,和函数收敛到f左右极限的均值,为(1+2)/2
故答案选择C
追问
谢谢
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询