如何用真值表求主析取范式和主合取范式
3个回答
展开全部
1.首先,我们需要了解一下数学概念。主合取范式,就是若干个极大项的合取(交集)。
2.主析取范式,就是若干个极小项的析取(并集)。
3.而所谓的极大项,就是包含全部数目的命题变元的析取表达式,例如:p∨¬q∨r
4.所谓的极小项,就是包含全部数目的命题变元的合取表达式,例如:¬p∧¬q∧r
5.用真值表方法,求命题公式的主合取范式与主析取范式。
6.根据真值表,我们取值为0的指派,得到最大项,从而写出最大项的合取,得到主合取范式
例如由命题变项p,q,r组成的某公式的成真赋值为:(001),(101),(110)
那么该公式的主析取范式为m1∨m5∨m6,
则其主合取范式为M0∧M2∧M3∧M4∧M7.
对应的极小项为m1=(~p∧~q∧r) m5=(p∧~q∧r) m6=(p∧q∧~r)
对应的极大项为M0=(~p∨~q∨~r) M2=(~p∨q∨~r) M3=(~p∨q∨r) M4=(p∨~q∨~r) M7=(p∨q∨r)
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
命题公式为真对应的极小项的析取就是主析取范式。
对于命题公式A为真的命题变元指派来说,这组成真指派一定对应一个成真的极小项,现在把这些所有成真的极小项并在一起组成的公式B,就是A的主析取范式。
证明:A等价于B
对于A为真的一组成真指派来说,该组指派一定含有成真的极小项,和其他成假的极小项。
把这些所有的极小项做析取,无论A为真的哪组指派,都必然有一个极小项为真,其他极小项为假。析取得到A必然为真。
如果A为假,在所有的极小项里,必然不包括成真的极小项,那么析取得到B也为假
对于命题公式A为真的命题变元指派来说,这组成真指派一定对应一个成真的极小项,现在把这些所有成真的极小项并在一起组成的公式B,就是A的主析取范式。
证明:A等价于B
对于A为真的一组成真指派来说,该组指派一定含有成真的极小项,和其他成假的极小项。
把这些所有的极小项做析取,无论A为真的哪组指派,都必然有一个极小项为真,其他极小项为假。析取得到A必然为真。
如果A为假,在所有的极小项里,必然不包括成真的极小项,那么析取得到B也为假
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-06-01 · 知道合伙人数码行家
huanglenzhi
知道合伙人数码行家
向TA提问 私信TA
知道合伙人数码行家
采纳数:117538
获赞数:517179
长期从事计算机组装,维护,网络组建及管理。对计算机硬件、操作系统安装、典型网络设备具有详细认知。
向TA提问 私信TA
关注
展开全部
P Q R P∧Q ┐P∧R (P∧Q)∨(┐P∧R)
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 1
1 1 1 1 0 1
原公式的主析取范式:(┐P∧┐Q∧R)V(┐P∧Q∧R)V(P∧Q∧┐R)V(P∧Q∧R)
主合取范式:(┐PVQV┐R)∧(┐PVQVR)∧(PV┐QVR)∧(PVQVR)
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 1
1 1 1 1 0 1
原公式的主析取范式:(┐P∧┐Q∧R)V(┐P∧Q∧R)V(P∧Q∧┐R)V(P∧Q∧R)
主合取范式:(┐PVQV┐R)∧(┐PVQVR)∧(PV┐QVR)∧(PVQVR)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |