判断一个数是否是素数,为什么除到其平方根就可以了?

暴走爱生活55
高能答主

2019-07-11 · 我是生活小达人,乐于助人就是我
暴走爱生活55
采纳数:4155 获赞数:1692819

向TA提问 私信TA
展开全部

因为如果一个数不是素数是合数, 那么一定可以由两个自然数相乘得到, 其中一个大于或等于它的平方根,一个小于或等于它的平方根,并且成对出现。

质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。

扩展资料:

一、相关性质

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。

如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

1、如果为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

二、数目计算

1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。

2、存在任意长度的素数等差数列。 

3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)

4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)

5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)

参考资料来源:百度百科-质数

容将狐6539
推荐于2017-09-15 · TA获得超过321个赞
知道答主
回答量:133
采纳率:60%
帮助的人:66.3万
展开全部
因为如果一个数不是素数是合数, 那么一定可以由两个自然数相乘得到, 其中一个大于或等于它的平方根,一个小于或等于它的平方根。并且成对出现。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式