第十二题,详细过程,谢谢!
1个回答
展开全部
由余弦定理可知:
cosB=(a^2+c^2-b^2)/(2ac)
cosA=(b^2+c^2-a^2)/(2bc)
把它代入已知式子得到:acosB-bcosA=(a^2-b^2)/c=3/5*c
从而得到a^2-b^2=3/5*c^2 (1)
而tanA/tanB=(sinA/cosA)*(cosB/sinB)=(sinA/sinB)*(cosB/cosA)
由正弦定理得到 sinA/sinB=a/b
再用余弦定理可得到tanA/tanB=(a*cosB)/(b*cosA)=(a^2+c^2-b^2)/(b^2+c^2-a^2)
再把(1)代入上式得到:tanA/tanB=(3/5*c^2+c^2)/(c^2-3/5*c^2)=(8/5*c^2)/(2/5*c^2)=4.
2) (1) tan(A) =4 × tan B ,tan( A - B ) = ( tanA - tanB ) / (1 + tanA * tanB) = 3 tanB / (1 +4 tan^2 (B)) = 3 / ( (1 / tanB )+ 4 tanB ) <= 3 / 4, tan B = 1/2
cosB=(a^2+c^2-b^2)/(2ac)
cosA=(b^2+c^2-a^2)/(2bc)
把它代入已知式子得到:acosB-bcosA=(a^2-b^2)/c=3/5*c
从而得到a^2-b^2=3/5*c^2 (1)
而tanA/tanB=(sinA/cosA)*(cosB/sinB)=(sinA/sinB)*(cosB/cosA)
由正弦定理得到 sinA/sinB=a/b
再用余弦定理可得到tanA/tanB=(a*cosB)/(b*cosA)=(a^2+c^2-b^2)/(b^2+c^2-a^2)
再把(1)代入上式得到:tanA/tanB=(3/5*c^2+c^2)/(c^2-3/5*c^2)=(8/5*c^2)/(2/5*c^2)=4.
2) (1) tan(A) =4 × tan B ,tan( A - B ) = ( tanA - tanB ) / (1 + tanA * tanB) = 3 tanB / (1 +4 tan^2 (B)) = 3 / ( (1 / tanB )+ 4 tanB ) <= 3 / 4, tan B = 1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询