已知数列{an}的前n项和为Sn=n(2平方)-n,n∈N+.
(1)求数列{an}的通项公式;(2)若bn=2(an平方)+1,求苏行列{bn}的前n项和Tn。...
(1)求数列{an}的通项公式;(2)若bn=2(an平方)+1,求苏行列{bn}的前n项和Tn。
展开
1个回答
展开全部
(1)
Sn =n^2- n (1)
n=1
a1= 0
S(n-1) = (n-1)^2-(n-1) (2)
(1)-(2)
an = 2n-2
(2)
bn=2(an)^2+1
= 2(2n-2)^2 +1
= 8(n-1)n - 8(n-1) +1
= 8(n-1)n - 8n +9
= (8/3)[ (n-1)n(n+1) - (n-2)(n-1)n ] - 8n +9
Tn = b1+b2+..+bn
= (8/3)(n-1)n(n+1) - 4n(n+1) + 9n
= (1/3)n ( 8(n-1)(n+1) -12(n+1) + 27 )
= (1/3)n( 8n^2- 8 -12n -12 +27)
=(1/3)n( 8n^2-12n+7)
Sn =n^2- n (1)
n=1
a1= 0
S(n-1) = (n-1)^2-(n-1) (2)
(1)-(2)
an = 2n-2
(2)
bn=2(an)^2+1
= 2(2n-2)^2 +1
= 8(n-1)n - 8(n-1) +1
= 8(n-1)n - 8n +9
= (8/3)[ (n-1)n(n+1) - (n-2)(n-1)n ] - 8n +9
Tn = b1+b2+..+bn
= (8/3)(n-1)n(n+1) - 4n(n+1) + 9n
= (1/3)n ( 8(n-1)(n+1) -12(n+1) + 27 )
= (1/3)n( 8n^2- 8 -12n -12 +27)
=(1/3)n( 8n^2-12n+7)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询