十二题 求详细过程

 我来答
百度网友fdec599
2013-08-25 · TA获得超过176个赞
知道小有建树答主
回答量:136
采纳率:0%
帮助的人:228万
展开全部
证明:充分性:当A=90°时,a2=b2+c2.
于是x2+2ax+b2=0⇔x2+2ax+a2-c2=0⇔[x+(a+c)][x+(a-c)]=0,
该方程有两根x1=-(a+c),x2=-(a-c).
同样,x2+2cx-b2=0⇔[x+(c+a)][x+(c-a)]=0,
该方程亦有两根x3=-(c+a),x4=-(c-a).
显然x1=x3,两方程有公共根.
必要性:设方程x2+2ax+b2=0与x2+2cx-b2=0的公共根为m,
则m2+2am+b2=0 (1)
m2+2cm−b2=0 (2)
(1)+(2)得m=-(a+c).(m=0舍去).
将m=-(a+c)代入(1)式,得[-(a+c)]2+2a•[-(a+c)]+b2=0,
整理得a2=b2+c2.
所以A=90°.
故结论成立.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式