cotx的一个原函数是什么

 我来答
滚雪球的秘密
高粉答主

2019-05-29 · 醉心答题,欢迎关注
知道大有可为答主
回答量:4152
采纳率:100%
帮助的人:114万
展开全部

cotx的一个原函数是:ln|sinx|+C。C为常数。

分析过程如下:

求cotx的一个原函数,就是对cotx不定积分。

∫cotx dx

=∫(cosx/sinx)dx

=∫(1/sinx)d(sinx)

=ln|sinx|+C

扩展资料:

求导数的原函数的方法

1、公式法

例如∫x^ndx=x^(n+1)/(n+1)+C

∫dx/x=lnx+C

∫cosxdx=sinx

等不定积分公式都应牢记,对于基本函数可直接求出原函数。

2、换元法

对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等

价于计算∫f(t)w'(t)dt。

例如计算∫e^(-2x)dx时令t=-2x,则x=-1/2t,dx=-1/2dt,代

入后得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。

3、分步法

对于∫u'(x)v(x)dx的计算有公式:∫u'vdx=uv-∫uv'dx(u,v为

u(x),v(x)的简写)

例如计算∫xlnxdx,易知x=(x^2/2)'则:

∫xlnxdx=x^2lnx/2-1/2∫xdx

=x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2)

通过对1/4(2x^2lnx-x^2)求导即可得到xlnx。

小小芝麻大大梦
高粉答主

2019-03-21 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:1002万
展开全部

cotx的一个原函数是:ln|sinx|+C。C为常数。

分析过程如下:

求cotx的一个原函数,就是对cotx不定积分。

∫cotx dx

=∫(cosx/sinx)dx

=∫(1/sinx)d(sinx)

=ln|sinx|+C

扩展资料:

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小耳朵爱聊车
高粉答主

2019-11-28 · 说的都是干货,快来关注
知道大有可为答主
回答量:7378
采纳率:100%
帮助的人:314万
展开全部

cotx的一个原函数是:ln|sinx|+C。C为常数。

分析过程如下:

求cotx的一个原函数,就是对cotx不定积分。

∫cotx dx

=∫(cosx/sinx)dx

=∫(1/sinx)d(sinx)

=ln|sinx|+C

扩展资料:

1、任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角,的顶点与平面直角坐标系的原点重合,而该角的始边则与正x轴重合。简单点理解:直角三角形任意一锐角的邻边和对边的比,叫做该锐角的余切。

2、余切表示用“cot+角度”,如:30°的余切表示为cot 30°;角A的余切表示为cot A。旧时用ctg A来表示余切,和cot A是一样的。假设∠A的对边为a、邻边为b,那么cot A= b/a(即邻边比对边

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2019-12-23 · TA获得超过8316个赞
知道大有可为答主
回答量:1.8万
采纳率:92%
帮助的人:707万
展开全部
1、公式法 例如∫x^ndx=x^(n+1)/(n+1)+C ∫dx/x=lnx+C ∫cosxdx=sinx 等不定积分公式都应牢记,对于基本函数可直接求出原函数。
2、换元法 对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等 价于计算∫f(t)w'(t)dt。例如计算∫e^(-2x)dx时令t=-2x,则x=-1/2t,dx=-1/2dt,代 入后得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。
3、分步法 对于∫u'(x)v(x)dx的计算有公式:∫u'vdx=uv-∫uv'dx(u,v为 u(x),v(x)的简写)...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
8826055
推荐于2018-03-11 · TA获得超过7510个赞
知道大有可为答主
回答量:1680
采纳率:81%
帮助的人:909万
展开全部
应该是 ln|sin x| + C
1/x的原函数是ln|x|而不是ln x
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式