若在约束条件3x-y-6≤0,x-y+2≥0,x≥0,y≥0下,目标函数z=ax+by

设x,y满足约束条件3x-y-6≤0,x-y+2≥0,x≥0y≥0.若目标函数z=ax+by(a>0,b>0)的最大值为12,给出下列四个判断;1、ab≤3/2;2、2/... 设x,y满足约束条件3x-y-6≤0,x-y+2≥0,x≥0 y≥0.若目标函数z=ax+by(a>0,b>0)的最大值为12,给出下列四个判断;

1、ab≤3/2;2、2/a+3/b≥25/6;3、(a^2+b^2)min=4;4、1/4<(b+1)/(a+1)<3
第二个已经知道怎么判断了,就是剩下的三个不知道,求具体过程呀....
展开
hbc3193034
2013-08-26 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
可行域是四边形OABC,其中O是原点,A是(2,0),B是(4,6),C是(0,2),
目标函数z=ax+by(a>0,b>0)的最大值为12,是在B处取得,
∴4a+6b=12,
1.6=2a+3b>=2√(2a*3b)=2√(6ab),
平方得36>=24ab,
∴0<ab<=3/2.
2.2/a+3/b=(2/a+3/b)(2a+3b)/6=(4+6a/b+6b/a+9)/6>=(13+12)/6=25/6.
3.原点到直线2x+3y-6=0的距离d=6/√13,
∴(a^2+b^2)|min=d^2=36/13.
原来的答案不对.
4.设k=(b+1)/(a+1),则b=k(a+1)-1,
代入2a+3b=6得2a+3k(a+1)-3=6,
∴k=(9-2a)/[3(a+1)]=3-11a/[3(a+1)]<3(a>0),
(9-2a)/[3(a+1)]>1/4,
<==>4(9-2a)>3(a+1),
<==>36-8a>3a+3,
<==>33>11a,
<==>a<3,
由2a+3b=6及b>0可得a<3.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式