已知x1,x2是方程x平分-2x-2=0的两个实数根,不解方程,求下列各式的值
展开全部
解:∵x1、x2是方程x²-2x-2=0的两个实数根,
∴由根与系数关系x1+x2=2,x1x2=-2,得:
(1)(x1+1)(x2+1)=x1x2+(x1+x2)+1=-2+2+1=1
(2)x2/x1+x1/x2==(x2²+x1²)/x1x2=[(x1+x2)²-2x1x2]/x1x2=(x1+x2)²/x1x2-2=2²/(-2)-2=-4
(3)(x1-x2)(x2-x1)=-(x1-x2)²=-[(x1+x2)²-4x1x2]=-(4+8)=-12
(4)x1²x2+x1x2²=x1x2(x1+x2)=(-2)×2=-4
(5)x1²+x2²=(x1+x2)²-2x1x2=2²-2×(-2)=8
(6)|x1-x2|=√(x1-x2)²=√(x1+x2)²-4x1x2=√(2²-4×(-2))=√12=2√3
∴由根与系数关系x1+x2=2,x1x2=-2,得:
(1)(x1+1)(x2+1)=x1x2+(x1+x2)+1=-2+2+1=1
(2)x2/x1+x1/x2==(x2²+x1²)/x1x2=[(x1+x2)²-2x1x2]/x1x2=(x1+x2)²/x1x2-2=2²/(-2)-2=-4
(3)(x1-x2)(x2-x1)=-(x1-x2)²=-[(x1+x2)²-4x1x2]=-(4+8)=-12
(4)x1²x2+x1x2²=x1x2(x1+x2)=(-2)×2=-4
(5)x1²+x2²=(x1+x2)²-2x1x2=2²-2×(-2)=8
(6)|x1-x2|=√(x1-x2)²=√(x1+x2)²-4x1x2=√(2²-4×(-2))=√12=2√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询