若直线y=kx-2与抛物线y^2=8x交于A、B两点,若线段AB的中点的横坐标是2,求|AB|。 5
展开全部
y = kx - 2, x = (y + 2)/k
y² = 8(y + 2)/k, ky² - 8y - 16 = 0
y₁ + y₂ = 8/k, y₁y₂ = -16/k
线段AB的中点的横坐标是2: (x₁ + x₂)/2 = [(y₁ + 2)/k + (y₂ + 2)/k]/2 = (4 + 2k)/k² = 2
k² - k - 2 = (k - 2)(k + 1) = 0
k = 2或k = 1
(1) k = 2
x = y/2 + 1
y₁ + y₂ = 4, y₁y₂ = -8
|AB|² = (x₁ - x₂)² + (y₁ - y₂)² = (y₁/2 + 1 - y₂/2 - 1)² + (y₁ - y₂)²
= (5/4)(y₁ - y₂)²
= (5/4)[(y₁ + y₂)² - 4y₁y₂]
= (5/4)(16 + 32) = 60
|AB| = 2√15
(2) k = -1
x = -y - 2
y₁ + y₂ = -8, y₁y₂ = 16
|AB|² = (x₁ - x₂)² + (y₁ - y₂)² = (-y₁ - 2 + y₂ + 2)² + (y₁ - y₂)²
= 2(y₁ - y₂)²
= 2[(y₁ + y₂)² - 4y₁y₂]
= 2(64 - 64) = 0
|AB| = 0
此时直线与抛物线相切于(2, 4)
y² = 8(y + 2)/k, ky² - 8y - 16 = 0
y₁ + y₂ = 8/k, y₁y₂ = -16/k
线段AB的中点的横坐标是2: (x₁ + x₂)/2 = [(y₁ + 2)/k + (y₂ + 2)/k]/2 = (4 + 2k)/k² = 2
k² - k - 2 = (k - 2)(k + 1) = 0
k = 2或k = 1
(1) k = 2
x = y/2 + 1
y₁ + y₂ = 4, y₁y₂ = -8
|AB|² = (x₁ - x₂)² + (y₁ - y₂)² = (y₁/2 + 1 - y₂/2 - 1)² + (y₁ - y₂)²
= (5/4)(y₁ - y₂)²
= (5/4)[(y₁ + y₂)² - 4y₁y₂]
= (5/4)(16 + 32) = 60
|AB| = 2√15
(2) k = -1
x = -y - 2
y₁ + y₂ = -8, y₁y₂ = 16
|AB|² = (x₁ - x₂)² + (y₁ - y₂)² = (-y₁ - 2 + y₂ + 2)² + (y₁ - y₂)²
= 2(y₁ - y₂)²
= 2[(y₁ + y₂)² - 4y₁y₂]
= 2(64 - 64) = 0
|AB| = 0
此时直线与抛物线相切于(2, 4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询