设a,b为任意实数,求证:a+b≥2√ab(只有当a=b时,等号才成立

(1)设a,b为任意实数,求证:a+b≥2√ab(只有当a=b时,等号才成立)(2)利用(1)的结论解题:已知m为实数,问当m取何值时,m+【3/(m+1)】+6取最小值... (1)设a,b为任意实数,求证:a+b≥2√ab(只有当a=b时,等号才成立)
(2)利用(1)的结论解题:已知m为实数,问当m取何值时,m+【3/(m+1)】+6取最小值,最小值是多少?
展开
boligj
2013-08-26 · TA获得超过7066个赞
知道大有可为答主
回答量:1938
采纳率:100%
帮助的人:1902万
展开全部
解:(1) 假设a≠b,且a+b=2√ab
(a+b)²=4ab
(a-b)²=0
∵a≠b ,∴(a-b)²=0永远也不成立。
所以只有当a=b的情况下,a+b=2√ab
(2) m+(3/m+1)+6
=m+1+(3/m+1)+5
>=2√((m+1)(3/m+1)) +5
=5+2√3
当m+1=3/m+1时取得最小值
(m+1)²=3
m+1=√3
m=√3-1 时取得最小值为5+2√3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式