大学高等数学,图片中划线的那题怎么做,谢谢
展开全部
5. y/x = tanv, v = arctan(y/x),
x^2+y^2 = e^(2u), u = (1/2)ln(x^2+y^2)
z = uv = (1/2)ln(x^2+y^2) arctan(y/x)
z'<x> = [x/(x^2+y^2)]arctan(y/x)
- (1/2)[y/(x^2+y^2)]ln(x^2+y^2)
z'<y> = [y/(x^2+y^2)]arctan(y/x)
+ (1/2)[x/(x^2+y^2)]ln(x^2+y^2)
x^2+y^2 = e^(2u), u = (1/2)ln(x^2+y^2)
z = uv = (1/2)ln(x^2+y^2) arctan(y/x)
z'<x> = [x/(x^2+y^2)]arctan(y/x)
- (1/2)[y/(x^2+y^2)]ln(x^2+y^2)
z'<y> = [y/(x^2+y^2)]arctan(y/x)
+ (1/2)[x/(x^2+y^2)]ln(x^2+y^2)
追问
天才呀,你怎么做到的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询