第一数学归纳法原理
1个回答
2013-08-28
展开全部
第一数学归纳法
第一数学归纳法可以概括为以下三步:
(1)归纳奠基:证明n=1时命题成立;
(2)归纳假设:假设n=k时命题成立;
(3)归纳递推:由归纳假设推出n=k+1时命题也成立.
从而就可断定命题对于从所有正整数都成立。
数学归纳法的正确性证明:
假设我们已经完成下面的推理
归纳基础:P(0)真;
归纳推理:对于任意k (P(k)→P(k+1))
但是还并非所有自然数都有性质P。
将这些不满足性质P的自然数构成一个非空自然数子集,这样,子集中必定有一个最小的自然数,设为m。
显然m>0,记做n+1,这样n一定具有性质P,即P(n)为真
存在n(P(n)∧¬P(n+1))╞╡对于任意的k(¬P(k)∨P(k+1))不满足╞╡对于任意的k(P(k)→P(k+1))不满足
假设推理结果与已经完成的归纳推理矛盾,所以假设错误。
所有自然数都有性质P。
第一数学归纳法可以概括为以下三步:
(1)归纳奠基:证明n=1时命题成立;
(2)归纳假设:假设n=k时命题成立;
(3)归纳递推:由归纳假设推出n=k+1时命题也成立.
从而就可断定命题对于从所有正整数都成立。
数学归纳法的正确性证明:
假设我们已经完成下面的推理
归纳基础:P(0)真;
归纳推理:对于任意k (P(k)→P(k+1))
但是还并非所有自然数都有性质P。
将这些不满足性质P的自然数构成一个非空自然数子集,这样,子集中必定有一个最小的自然数,设为m。
显然m>0,记做n+1,这样n一定具有性质P,即P(n)为真
存在n(P(n)∧¬P(n+1))╞╡对于任意的k(¬P(k)∨P(k+1))不满足╞╡对于任意的k(P(k)→P(k+1))不满足
假设推理结果与已经完成的归纳推理矛盾,所以假设错误。
所有自然数都有性质P。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询