已知|a|=2,|b|=3,|a-b|=√7,则向量a与b的夹角是
3个回答
展开全部
|a-b|=√7
平方,得
|a|²-2a*b+|b|²=7
4-2a*b+9=7
a*b=3
所以
cos(a,b)=a*b/(|a||b|)
=3/(2×3)
=1/2
所以
夹角(a,b)=π/3
平方,得
|a|²-2a*b+|b|²=7
4-2a*b+9=7
a*b=3
所以
cos(a,b)=a*b/(|a||b|)
=3/(2×3)
=1/2
所以
夹角(a,b)=π/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由向量的三角形法则,向量a-b从b的终端指向a的终端,
所以|a|、|b|、|a-b|构成三角形。
所以向量a与b可以由余弦定理求解。
cos<a,b>=(|a|^2+|b|^2-|a-b|^2)/(2*|a|*|b|)
=(4+9-7)/(2*2*3)
=1/2
<a,b>=π/3
所以,向量a与b的夹角是π/3
所以|a|、|b|、|a-b|构成三角形。
所以向量a与b可以由余弦定理求解。
cos<a,b>=(|a|^2+|b|^2-|a-b|^2)/(2*|a|*|b|)
=(4+9-7)/(2*2*3)
=1/2
<a,b>=π/3
所以,向量a与b的夹角是π/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询