3个回答
2013-08-27
展开全部
对一个高考知识点或一类题型的分析
针对数列中一道典型的题将以下如何分析和解决问题。
题目:an=3an-1+4, a1=1,求解an。
这道题的求解方法有很多,递推和列项相消过于复杂,这里就不谈了。
解法一:递推;
解法二:列项相消;
解法三:差比方程构造法:
已知:an=3an-1+4;
设存在一常数x使得:
an+x=3(an-1+x);
解得:x=2;
设bn=an+2,则有bn=3bn-1,解得bn=3n;
从而解得An=3n-2.
解法四:探索法:
已知:an=3an-1+4;1
an-1=3an-2+4;2
1-2得:an- an-1=3an-1-3an-2=3(an-1-an-2);
设bn= an- an-1 ,则有
bn=3 bn-1
解得bn=2*3n-1
an=3an-1+4;
an- an-1=2*3n;
消去an-1得An=3n-2.
解法三、四都是观察到an=3an-1+4很像等比数列,于是采用构造等比数列解得。
变形一:an=3an-1+4n同样可以采用上述解法,但注意应有解法三时注意设的x不再是一常数,准确的应该是xn。得到an+xn=3(an-1+xn-1)。
变形二:an=3an-1+4*3n,可将方程两边同时除以3n得an/3n =(an-1/3n-1)+4
设bn= an/3n;则有bn=3bn-1+4又化为原题的形式可进一步求解
针对数列中一道典型的题将以下如何分析和解决问题。
题目:an=3an-1+4, a1=1,求解an。
这道题的求解方法有很多,递推和列项相消过于复杂,这里就不谈了。
解法一:递推;
解法二:列项相消;
解法三:差比方程构造法:
已知:an=3an-1+4;
设存在一常数x使得:
an+x=3(an-1+x);
解得:x=2;
设bn=an+2,则有bn=3bn-1,解得bn=3n;
从而解得An=3n-2.
解法四:探索法:
已知:an=3an-1+4;1
an-1=3an-2+4;2
1-2得:an- an-1=3an-1-3an-2=3(an-1-an-2);
设bn= an- an-1 ,则有
bn=3 bn-1
解得bn=2*3n-1
an=3an-1+4;
an- an-1=2*3n;
消去an-1得An=3n-2.
解法三、四都是观察到an=3an-1+4很像等比数列,于是采用构造等比数列解得。
变形一:an=3an-1+4n同样可以采用上述解法,但注意应有解法三时注意设的x不再是一常数,准确的应该是xn。得到an+xn=3(an-1+xn-1)。
变形二:an=3an-1+4*3n,可将方程两边同时除以3n得an/3n =(an-1/3n-1)+4
设bn= an/3n;则有bn=3bn-1+4又化为原题的形式可进一步求解
推荐于2018-04-26
展开全部
1,
正比例函数:y=kx => 一次函数:y=kx+b
(k为斜率,b为截距)图像为直线,在k相同的情况下,根据b的值的不同图像上下平移。
在b相同,k不同的情况下图像进行旋转。
2,
表达式为 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
反比例函数的其他形式:y=k/x=k·1/x=kx-1
反比例函数的特点:y=k/x→xy=k
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
反比例函数关于原点中心对称,关于坐标轴角平分线轴对称,另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣,即k的绝对值。
3
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数
二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)</CA>
交点式:y=a(x-x�6�9)(x-x �6�0) [仅限于与x轴有交点A(x�6�9 ,0)和 B(x�6�0,0)的抛物线]
其中x1,2= -b±√b^2-4ac
注:在3种形式的互相转化中,有如下关系:
______
h=-b/2a k=(4ac-b^2)/4a x�6�9,x�6�0=(-b±√b^2-4ac)/2a
二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
正比例函数:y=kx => 一次函数:y=kx+b
(k为斜率,b为截距)图像为直线,在k相同的情况下,根据b的值的不同图像上下平移。
在b相同,k不同的情况下图像进行旋转。
2,
表达式为 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
反比例函数的其他形式:y=k/x=k·1/x=kx-1
反比例函数的特点:y=k/x→xy=k
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
反比例函数关于原点中心对称,关于坐标轴角平分线轴对称,另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣,即k的绝对值。
3
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数
二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)</CA>
交点式:y=a(x-x�6�9)(x-x �6�0) [仅限于与x轴有交点A(x�6�9 ,0)和 B(x�6�0,0)的抛物线]
其中x1,2= -b±√b^2-4ac
注:在3种形式的互相转化中,有如下关系:
______
h=-b/2a k=(4ac-b^2)/4a x�6�9,x�6�0=(-b±√b^2-4ac)/2a
二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,
可以看出,二次函数的图像是一条抛物线。
抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询