高中数学题求解!求过程详细!
设sinθ+cosθ=√2/3,π/2<θ<π。求:1)sin³θ+cos³θ2)tanθ-cotθ...
设sinθ+cosθ=√2/3,π/2<θ<π。求:
1)sin³θ+cos³θ
2)tanθ-cotθ 展开
1)sin³θ+cos³θ
2)tanθ-cotθ 展开
5个回答
展开全部
(1)根据立方和公式sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ+cos²θ-sinθcosθ)
再由(sinθ+cosθ)(sinθ+cosθ)=sin²θ+cos²θ+2sinθcosθ,得sinθcosθ=-7/18;
所以sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ+cos²θ-sinθcosθ)=25√2/54
(2)tanθ-cotθ=sinθ/cosθ-cosθ/sinθ
=(sin²θ-cos²θ)/sinθcosθ
=(sinθ+cosθ)(sinθ-cosθ)/sinθcosθ
再由)(sinθ-cosθ)(sinθ-cosθ)=sin²θ+cos²θ-2sinθcosθ=16/9
又因为π/2<θ<π,所以sinθ-cosθ=4/3
从而tanθ-cotθ=sinθ/cosθ-cosθ/sinθ
=(sin²θ-cos²θ)/sinθcosθ
=(sinθ+cosθ)(sinθ-cosθ)/sinθcosθ=-8√2/7
=(sinθ+cosθ)(sin²θ+cos²θ-sinθcosθ)
再由(sinθ+cosθ)(sinθ+cosθ)=sin²θ+cos²θ+2sinθcosθ,得sinθcosθ=-7/18;
所以sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ+cos²θ-sinθcosθ)=25√2/54
(2)tanθ-cotθ=sinθ/cosθ-cosθ/sinθ
=(sin²θ-cos²θ)/sinθcosθ
=(sinθ+cosθ)(sinθ-cosθ)/sinθcosθ
再由)(sinθ-cosθ)(sinθ-cosθ)=sin²θ+cos²θ-2sinθcosθ=16/9
又因为π/2<θ<π,所以sinθ-cosθ=4/3
从而tanθ-cotθ=sinθ/cosθ-cosθ/sinθ
=(sin²θ-cos²θ)/sinθcosθ
=(sinθ+cosθ)(sinθ-cosθ)/sinθcosθ=-8√2/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin³θ+cos³θ
=(sinθ+cosθ)(sin²θ+cos²θ-sinθ*cosθ)
=(sinθ+cosθ)(sin²θ+cos²θ-[(cosθ+sinθ)²-1]/2)
=9√3/16
打字有点慢还有半个
tanθ-cotθ=sinθ/cosθ-cosθ/sinθ
=(sin²θ-cos²θ)/sinθcosθ
=(sinθ+cosθ)(sinθ-cosθ)/[(cosθ+sinθ)²-1]/2
=正负2√15
=(sinθ+cosθ)(sin²θ+cos²θ-sinθ*cosθ)
=(sinθ+cosθ)(sin²θ+cos²θ-[(cosθ+sinθ)²-1]/2)
=9√3/16
打字有点慢还有半个
tanθ-cotθ=sinθ/cosθ-cosθ/sinθ
=(sin²θ-cos²θ)/sinθcosθ
=(sinθ+cosθ)(sinθ-cosθ)/[(cosθ+sinθ)²-1]/2
=正负2√15
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询