初中数学证明题
已知:如图,矩形ABCD中,点G为BC延长线上一点,连接DG,BH⊥DG于H,且GH=DH,点E,F分别在AB,BC上,且EF∥DG。若GF=AD+BE,求证:EF=1/...
已知:如图,矩形ABCD中,点G为BC延长线上一点,连接DG,BH⊥DG于H,且GH=DH,点E,F分别在AB,BC上,且EF∥DG。若GF=AD+BE,求证:EF=1/2DG。
展开
展开全部
1)李顷谈连接DB,由于GH=DH,BH⊥DC于H,故三角形DBH与三角形BGH完全相似,故BG=BD=5,由于HG/BC=CG/DG,得(1/2)DG/5=2/DG,得DG=2倍的根号5;
(2)因为DG=2倍的根号5,故DC=4,若要EF=1/2DG,需证明,EB=1/2AB=1/2DC=2,此乎世时BF=1,由于BG=5,BF=1时,FG=4,由哪碰于EB=2,AD=3,故GF=AD+BE,EF=1/2DG是假命题不成立,应该是BG=AD+BE,EF=1/2DG
(2)因为DG=2倍的根号5,故DC=4,若要EF=1/2DG,需证明,EB=1/2AB=1/2DC=2,此乎世时BF=1,由于BG=5,BF=1时,FG=4,由哪碰于EB=2,AD=3,故GF=AD+BE,EF=1/2DG是假命题不成立,应该是BG=AD+BE,EF=1/2DG
追问
我没问第一题
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询