解几道数学证明题
1.某城市搞亮化工程,如图,在甲楼底部、乙楼顶部分别安装一盏射灯.已知A灯恰好照到B灯,B灯恰好照到甲楼的顶部,如果两盏灯的光线与水平线的夹角相等,那么能否说甲楼的高度是...
1.某城市搞亮化工程,如图,在甲楼底部、乙楼顶部分别安装一盏射灯.已知A灯恰好照到B灯,B灯恰好照到甲楼的顶部,如果两盏灯的光线与水平线的夹角相等,那么能否说甲楼的高度是乙楼的2倍?说说你的看法.
2.学校举行春季田径运动会,飞飞报了一百米比赛的项目,为了掌握速度,他在赛前活动中要找一段100m的直道,AC是学校操场百米跑道,他站在C处,调整太阳帽D,使视线正好落在A处,然后转过一个角度,保持刚才的角度,让视线落在通往教学楼的半路B处,如图所示,他就在BC这段路上练习,你认为他这样做有道理吗?说明理由.
3.如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、 H.(1)请根据题意用实线补全图形;(2)求证:△AFB≌△AGE.
4,。要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则工件的外径必是CD之长了,你能说明其中的道理吗? 展开
2.学校举行春季田径运动会,飞飞报了一百米比赛的项目,为了掌握速度,他在赛前活动中要找一段100m的直道,AC是学校操场百米跑道,他站在C处,调整太阳帽D,使视线正好落在A处,然后转过一个角度,保持刚才的角度,让视线落在通往教学楼的半路B处,如图所示,他就在BC这段路上练习,你认为他这样做有道理吗?说明理由.
3.如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB、BC于点G、 H.(1)请根据题意用实线补全图形;(2)求证:△AFB≌△AGE.
4,。要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则工件的外径必是CD之长了,你能说明其中的道理吗? 展开
2个回答
展开全部
是的!
水平线BD⊥甲楼AC
夹角相等∠ABD=∠CBD
BD=BD
Rt△ABD≌Rt△CBD
AD=CD
AC=2AD
AD=乙楼高
甲楼=2*乙楼的高。
选为满意回答
2、在△ADC和△BDC中
∠ADC=∠BDC
CD=CD
∠ACD=∠BCD
∴△ADC≌△BDC
∴AC=BC
又AC=100M
∴BC=100M
3、(1)解:∠CAF=∠DAG.
理由:∵Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,
∴∠BAC=∠EAD,
∵∠BAC=∠CAF+∠BAE,∠EAD=∠DAG+∠BAE,
∴∠CAF=∠DAG;
(2)证明:∵将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,
∴AC=AD,∠C=∠D=90°,
在△ACF和△ADG中,
∠C=∠D
AC=AD
∠CAF=∠DAG
∴△ACF≌△ADG(ASA).
选为满意回答
水平线BD⊥甲楼AC
夹角相等∠ABD=∠CBD
BD=BD
Rt△ABD≌Rt△CBD
AD=CD
AC=2AD
AD=乙楼高
甲楼=2*乙楼的高。
选为满意回答
2、在△ADC和△BDC中
∠ADC=∠BDC
CD=CD
∠ACD=∠BCD
∴△ADC≌△BDC
∴AC=BC
又AC=100M
∴BC=100M
3、(1)解:∠CAF=∠DAG.
理由:∵Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,
∴∠BAC=∠EAD,
∵∠BAC=∠CAF+∠BAE,∠EAD=∠DAG+∠BAE,
∴∠CAF=∠DAG;
(2)证明:∵将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,
∴AC=AD,∠C=∠D=90°,
在△ACF和△ADG中,
∠C=∠D
AC=AD
∠CAF=∠DAG
∴△ACF≌△ADG(ASA).
选为满意回答
更多追问追答
追问
后面还有一个题,谢谢
追答
4、∵OA=OB,OC=OD,∠AOB=∠COD
∴△AOB≌△COD
∴AB=CD
大哥。。请分开来问题,缺采纳。。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询