已知关于x的方程x²-kx+k²+n=0有两个不相等的实数根X
已知关于X的方程X^2-kx+k^2+n=0,有两个不相等的实数根X1,X2;且(2*X1+X2)^2-8*(2*X1+X2)+15=0(1)用含K的代数式表示X1(2)...
已知关于X的方程X^2-kx+k^2+n=0,有两个不相等的实数根X1,X2;且(2*X1+X2)^2-8*(2*X1+X2)+15=0 (1)用含K的代数式表示X1 (2)若n=-3时,求k的值
展开
2个回答
2013-08-28 · 知道合伙人教育行家
无脚鸟╰(⇀‸↼)╯
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:6742
获赞数:132162
现在为上海海事大学学生,在学习上有一定的经验,擅长数学。
向TA提问 私信TA
关注
展开全部
解:
(1)∵(2x1+x2)^2-8(2x1+x2)+15=0,x1+x2=k,
∴(x1+x1+x2)^2-8(x1+x1+x2)+15=0
∴(x1+k)^2-8(x1+k)+15=0
∴[(x1+k)-3][(x1+k)-5]=0
∴x1+k=3或x1+k=5,
∴x1=3-k或x1=5-k.
(2)∵n=-3,
原方程化为:x^2-kx+k^2-3=0,
把x1=3-k代入,得到k^2-3k+2=0,
解得k1=1,k2=2,
经检验k=2,不合题意舍去
把x1=5-k代入,得到3k2-15k+22=0,△=-39<0,所以此时k不存在.
∴k=1.
(1)∵(2x1+x2)^2-8(2x1+x2)+15=0,x1+x2=k,
∴(x1+x1+x2)^2-8(x1+x1+x2)+15=0
∴(x1+k)^2-8(x1+k)+15=0
∴[(x1+k)-3][(x1+k)-5]=0
∴x1+k=3或x1+k=5,
∴x1=3-k或x1=5-k.
(2)∵n=-3,
原方程化为:x^2-kx+k^2-3=0,
把x1=3-k代入,得到k^2-3k+2=0,
解得k1=1,k2=2,
经检验k=2,不合题意舍去
把x1=5-k代入,得到3k2-15k+22=0,△=-39<0,所以此时k不存在.
∴k=1.
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询