欧氏几何公理的公理内容
1.过相异两点,能作且只能作一直线(直线公理)。
2.线段(有限直线)可以任意地延长。
3.以任一点为圆心、任意长为半径,可作一圆(圆租空公理)。
4.凡是直角都相等(角公理)。
5.两直线被第三条直线所截,如果同侧两内角和小于两个直角, 则两直线作延长时在此侧会相交。
上述前三条公理是尺规作图公理,用来定直线与圆。在纸面上用尺规划出的任何直线与圆,按定义而言,都不是「真正」数学上的直线与圆。然而,欧氏似乎是说:我们可以用尺规作出近似的图形,以帮助我们想像真正的图形,再配合正确的推理就够了。
第四条公理比较不一样,它好像是一个未证明的定理。事实上,它宣称著:直角的不变性或空间的齐性 (the homogeneity of space)。它规范了直角,为第五公理铺路。
第五公理又叫做平行公理 (the parallel axiom),因为它等价于:
在一平面内,过直线外一点,可作且只可作一直线跟此直线平行。 (a,b,c,d 皆为正数)
1.跟同一个量相等的两个量相等;即若 a=c 且 b=c,则 a = b(等量代换公理)。
2.等量加等量,其和相等;即若 a=b 且 c=d,则 a+c = b+d(等量加法公理)。
3.等量减等量,其差相等;即若 a=b 且 c=d,则 a-c = b-d(等量减法公理)。
4.完全叠合的两个图形是全等的(移形叠合公理)。
5.全量大於分量,即 a+b>a(全量大於分量公理)。 事实上,欧氏《几何原本》开宗明义是由23个定义出发,接著才是十条几何公理与一般公理。在23个定义中,首六个特别值得提出来讨论:
1.点是没有部分的(A point is that which has no part.)。
换言之,点只占有位置而没有大小,即点的长度 d=0。这是修正毕氏学派「d>c」的失败而得到的。然而,在谈论线段的长度时,欧氏直接诉诸弊隐瞎常识,根本不用这个定义,避开了「由没有长度的点累积成有长度携历的线段」之困局。许多人抱怨「点是没有部分的」这句话难於理解,这是因为对毕氏学派的研究纲领缺乏了解的缘故。
2.线段只有长度而没有宽度(A line is breadless length.)。
3.线的极端是点(The extremities of a line are points.)
这表示线段是由点组成的并且线段只有长度而没有面积。
4.直线是其组成点,均匀地直放著的线 (A straight line is a line which lies evenly with the points on itself.)
5.面只有长度与宽度(A suface is that which has length and breath only.)
6.面的极端是线(The extremities of a surface are lines.)。
4~6这三个定义表示,面是由线所组成的,没有厚度。因此,面只有面积,而没有体积。
利用23个定义、10条几何公理於一般公理,我们就可以推导出:等腰三角形的正逆定理,三角形三内角和定理。进一步还可以推导出泰利斯 (Thales) 基本定理,用同一种正多边形铺地板只有三种样式,正多面体恰好有五种。事实上,这10条公理就是欧式几何的总源头,已经可以推导出整个欧式几何了。
2024-10-13 广告
广告 您可能关注的内容 |