数理答疑团为您解答,希望对你有所帮助。
附件已发
1、如图,已知△ABC和△ADE都是等边△,CD=BF,求证:四边形CDEF是平行四边形
证明:为了方便起见,设∠BAD=∠1、∠ACF=∠2、∠DEB=∠3、∠EAB=∠4、∠DCG=∠5、...如图。
因为:BD=AF,AB=AC,∠ABD=∠CAF=60°
所以:三角形ABD和三角形CAF全等。
所以:∠1=∠2,同时FC=AD.
由于:∠ABD=∠AED=60°
所以:AEBD四点共圆。
所以:∠1=∠3
因此有:∠1=∠2=∠3
由共圆还得:∠10=∠11=∠ABD=∠FAC=60°
因此:∠7=60°+∠3、∠6=60°+∠1、∠8=60°+∠2
所以:由∠7=∠8得ED平行FC
由于FC=AD=ED
所以:四边形EDCF是平行四边形。(一组对边平行且相等的四边形是平行四边形)
2、
已知:在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。M为AB中点,联结ME,MD、ED
求证:角EMD=2角DAC
证明:
∵M为AB边的中点,AD⊥BC, BE⊥AC,∴ MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA
∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA
∴∠MAD=∠MDA, ∴∠BMD=2∠MAD, ∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC
祝你学习进步,更上一层楼! (*^__^*)