2个回答
2013-08-29
展开全部
1\魔术师说:“只要告诉我一个数,我便知道你的鞋子大小和年龄。要与 你自身有关系的。将自己的鞋子尺码数(要整数)乘以2,再加上39,然后乘以50,再加上56,最后减去自己的年龄。”
董饶听后迅速地计算着,他鞋码25,1983年生,按要求计算是:
(25X2+39)+56-1983=2523
他将这个数报出后,魔术师立即告诉他:今年23岁,鞋码25,接着一些人纷纷报出计算结果,魔术师一一猜中,无一失误。
你知道这是为什么吗?答案:设鞋码X,Y年出生,则:
(2X+39)*50+56-Y
=100X+2006-Y
该年是2006年,2006-Y即年龄
百位以上的数字就是鞋码趣味数学题(一)
1.过桥
今有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下为:a 2 分;b 3 分;c 8 分;d 10分。走的快的人要等走的慢的人,请问如何的走法才能在 21 分 让所有的人都过桥?
2.巧插数字
125 × 4 × 3 = 2000
这个式子显然不等,可是如果算式中巧妙地插入两个数字“7”,这个等式便可以成立,你知道这两个7应该插在哪吗?
3.温馨四季
春夏 × 秋冬 = 春夏秋冬
春冬 × 秋夏 = 春夏秋冬
式中 春、夏、秋、冬 各代表四个不同的数字,你能指出它们各代表什么数字吗?
4.破车下山
一个破车要走两英哩的路,上山及下山各一英哩,上山时平均速度每小时15英哩问当它下山走第二个英哩的路时要多快才能达到平均速度为每小时30英哩?是45英哩吗?你可要考虑清楚了呦!
5.共卖多少鸡蛋
王老太上集市上去卖鸡蛋,第一个人买走蓝子里鸡蛋的一半又一个,第二个人买走剩下鸡蛋的一半又一个,这时蓝子里还剩一个鸡蛋,请问王老太共卖出多少个鸡蛋?
6.有多少人参加考试
试卷上有6道选择题,每题有3个选项,结果阅卷老师发现,在所有卷子中任选3张答卷,都有一道题的选择互不相同,请问最多有多少人参加了这次考试?
趣味数学题(二)
一、丢番图的墓志铭
古希腊数学家丢番图的墓志铭里包含一个有趣的一元一次方程问题:
过路人!这儿埋葬着丢番图,他生命的六分之一是童年;再过了一生的十二分之一后,他开始长胡须;又过了一生的七分之一后他结了婚;婚后五年他有了儿子,但可惜儿子的寿命只有父亲的一半;儿子死后,老人再活了四年就结束了余生。
根据这个墓志铭,请计算出丢番图的寿命。
二、怎样合算
小臭班里的45个同学在石老师的带领下到一个风景点春游。他们准备买票时,看见一块牌子上写着:“请游客购票:每张票票价2元;50人或50人以上可以购买团体票,票价按八折优惠。”很多同学提出:“我们应该怎样买票比较合算?”石老师说:“这个问题问得好,看谁能计算出来。”
三、分苹果
秋天到了,小猴征征种的苹果都成熟了,他挑了最好的苹果装在6个箱子中,准备送给好朋友童童和欣欣,6个箱子中分别装有11、12、14、16、17、20个苹果。因为童童小,吃东西少一些,所以他准备只把1/3的苹果分给童童,其余的分给欣欣,箱子不能拆分,你知道征征是怎么分的吗?
四、谁将取胜
第三届动物运动会上,老虎和狮子在1200米的长跑比赛中成绩相同。为最后决出胜负,裁判老猴让老虎和狮子举行附加赛。这两头猛兽最后赛的是百米来回跑,共计200米远。老虎每跨一步为2米,狮子一步为3米,但老虎每跨三步,狮子却只能跨两步。
据以上的“情报”,你能提前判断出谁将取胜吗?
五、学生的编号
某学校为每个学生编号,设定末尾用1表示男生,用2表示女生;199713321表示“1997年入学的一年级三班的32号同学,该同学是男生”,那么,199532012表示的学生是哪一年入学的,几年级几班的,学号是多少,是男生还是女生?
答案
趣味数学题(一)
第1题答案: 先是a和b一起过桥,然后将b留在对岸,a独自返回。a返回后将手电筒交给c和d,让c和d一起过桥,c和d到达对岸后,将手电筒交给b,让b将手电筒带回,最后a和b再次一起过桥。则所需时间为:3+2+10+3+3=21分钟。
第2题答案:插入数字后的式子为:1725×4×3=20700
第3题答案:春=2;夏=1;秋=8;冬=7
第4题答案: 无论如何破车的平均速度也不可能达到30英里/小时。因为当平均速度为30英里/小时时,破车上、下山的总时间应为1/15小时。而破车上山就用了1/15小时。所以说破车的平均速度是达不到30英里/小时的。
第5题答案:王老太共卖了10个鸡蛋。
第6题答案:最多有13人参加考试,不过具体的思考过程我也不太清楚,请高手指教!
趣味数学题(二)
一、 设丢番图寿命为x岁,由题意得
x/6+x/12+x/7+5+x/2+4=x
化简这个方程,得75x/84+9=x。
解之,得x=84。
就是说,丢番图的寿命是84岁。
二、 买46张个人票应付钱:2×46=92(元)。
买50张团体票应付钱:2×50×80%=80(元)。
买团体票比买个人票少付:92-80=12(元)。
即买团体票比买个人票少付12元,所以,应该买团体票。
三、 6个箱子中共有苹果11+12+14+16+17+20=90(个),所以童童应分苹果90×1/3=30(个)。因为14+16=30(个),所以应该把装有14、16个苹果的两箱苹果分给童童,其余的分给欣欣。
四、 老虎跨三步,跑2×3=6(米);狮子跨两步,跑3×2=6(米)。所以老虎和狮子跑的速度是一样的。但老虎正好以五十步跑完100米,而狮子则在跑到99米之处后还须再跨一步,到达102米处,然后往回跑。这样,狮子比老虎要多跑4米,故老虎取胜。
五、199532012表示的学生是1995年入学的三年级二班的,学号是1号,该生是女生。
矫正闹钟
答案:我总共用去的时间为4小时50分(7∶00—11∶50),除去游玩的时间一个半小时,走路的时间应为3小时20分钟。因为来去时的步行时间相等,都为1小时40分钟,并且离开博物馆开始往家走的准确时间应为8∶50+1∶30 = 10∶20,所以回到家里的时间应为10∶20+1∶40 = 12。这时,应将闹钟拨到12时才是准确的。
为什么少了1元?
解答:苹果每千克1元,梨每千克 元,混合后每千克(1+ )÷2= 元,而小明2.5千克只收2元,即每千克只收 元。这样,每千克少收 - = 元。苹果和梨一共30千克,就少收了1元。
董饶听后迅速地计算着,他鞋码25,1983年生,按要求计算是:
(25X2+39)+56-1983=2523
他将这个数报出后,魔术师立即告诉他:今年23岁,鞋码25,接着一些人纷纷报出计算结果,魔术师一一猜中,无一失误。
你知道这是为什么吗?答案:设鞋码X,Y年出生,则:
(2X+39)*50+56-Y
=100X+2006-Y
该年是2006年,2006-Y即年龄
百位以上的数字就是鞋码趣味数学题(一)
1.过桥
今有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下为:a 2 分;b 3 分;c 8 分;d 10分。走的快的人要等走的慢的人,请问如何的走法才能在 21 分 让所有的人都过桥?
2.巧插数字
125 × 4 × 3 = 2000
这个式子显然不等,可是如果算式中巧妙地插入两个数字“7”,这个等式便可以成立,你知道这两个7应该插在哪吗?
3.温馨四季
春夏 × 秋冬 = 春夏秋冬
春冬 × 秋夏 = 春夏秋冬
式中 春、夏、秋、冬 各代表四个不同的数字,你能指出它们各代表什么数字吗?
4.破车下山
一个破车要走两英哩的路,上山及下山各一英哩,上山时平均速度每小时15英哩问当它下山走第二个英哩的路时要多快才能达到平均速度为每小时30英哩?是45英哩吗?你可要考虑清楚了呦!
5.共卖多少鸡蛋
王老太上集市上去卖鸡蛋,第一个人买走蓝子里鸡蛋的一半又一个,第二个人买走剩下鸡蛋的一半又一个,这时蓝子里还剩一个鸡蛋,请问王老太共卖出多少个鸡蛋?
6.有多少人参加考试
试卷上有6道选择题,每题有3个选项,结果阅卷老师发现,在所有卷子中任选3张答卷,都有一道题的选择互不相同,请问最多有多少人参加了这次考试?
趣味数学题(二)
一、丢番图的墓志铭
古希腊数学家丢番图的墓志铭里包含一个有趣的一元一次方程问题:
过路人!这儿埋葬着丢番图,他生命的六分之一是童年;再过了一生的十二分之一后,他开始长胡须;又过了一生的七分之一后他结了婚;婚后五年他有了儿子,但可惜儿子的寿命只有父亲的一半;儿子死后,老人再活了四年就结束了余生。
根据这个墓志铭,请计算出丢番图的寿命。
二、怎样合算
小臭班里的45个同学在石老师的带领下到一个风景点春游。他们准备买票时,看见一块牌子上写着:“请游客购票:每张票票价2元;50人或50人以上可以购买团体票,票价按八折优惠。”很多同学提出:“我们应该怎样买票比较合算?”石老师说:“这个问题问得好,看谁能计算出来。”
三、分苹果
秋天到了,小猴征征种的苹果都成熟了,他挑了最好的苹果装在6个箱子中,准备送给好朋友童童和欣欣,6个箱子中分别装有11、12、14、16、17、20个苹果。因为童童小,吃东西少一些,所以他准备只把1/3的苹果分给童童,其余的分给欣欣,箱子不能拆分,你知道征征是怎么分的吗?
四、谁将取胜
第三届动物运动会上,老虎和狮子在1200米的长跑比赛中成绩相同。为最后决出胜负,裁判老猴让老虎和狮子举行附加赛。这两头猛兽最后赛的是百米来回跑,共计200米远。老虎每跨一步为2米,狮子一步为3米,但老虎每跨三步,狮子却只能跨两步。
据以上的“情报”,你能提前判断出谁将取胜吗?
五、学生的编号
某学校为每个学生编号,设定末尾用1表示男生,用2表示女生;199713321表示“1997年入学的一年级三班的32号同学,该同学是男生”,那么,199532012表示的学生是哪一年入学的,几年级几班的,学号是多少,是男生还是女生?
答案
趣味数学题(一)
第1题答案: 先是a和b一起过桥,然后将b留在对岸,a独自返回。a返回后将手电筒交给c和d,让c和d一起过桥,c和d到达对岸后,将手电筒交给b,让b将手电筒带回,最后a和b再次一起过桥。则所需时间为:3+2+10+3+3=21分钟。
第2题答案:插入数字后的式子为:1725×4×3=20700
第3题答案:春=2;夏=1;秋=8;冬=7
第4题答案: 无论如何破车的平均速度也不可能达到30英里/小时。因为当平均速度为30英里/小时时,破车上、下山的总时间应为1/15小时。而破车上山就用了1/15小时。所以说破车的平均速度是达不到30英里/小时的。
第5题答案:王老太共卖了10个鸡蛋。
第6题答案:最多有13人参加考试,不过具体的思考过程我也不太清楚,请高手指教!
趣味数学题(二)
一、 设丢番图寿命为x岁,由题意得
x/6+x/12+x/7+5+x/2+4=x
化简这个方程,得75x/84+9=x。
解之,得x=84。
就是说,丢番图的寿命是84岁。
二、 买46张个人票应付钱:2×46=92(元)。
买50张团体票应付钱:2×50×80%=80(元)。
买团体票比买个人票少付:92-80=12(元)。
即买团体票比买个人票少付12元,所以,应该买团体票。
三、 6个箱子中共有苹果11+12+14+16+17+20=90(个),所以童童应分苹果90×1/3=30(个)。因为14+16=30(个),所以应该把装有14、16个苹果的两箱苹果分给童童,其余的分给欣欣。
四、 老虎跨三步,跑2×3=6(米);狮子跨两步,跑3×2=6(米)。所以老虎和狮子跑的速度是一样的。但老虎正好以五十步跑完100米,而狮子则在跑到99米之处后还须再跨一步,到达102米处,然后往回跑。这样,狮子比老虎要多跑4米,故老虎取胜。
五、199532012表示的学生是1995年入学的三年级二班的,学号是1号,该生是女生。
矫正闹钟
答案:我总共用去的时间为4小时50分(7∶00—11∶50),除去游玩的时间一个半小时,走路的时间应为3小时20分钟。因为来去时的步行时间相等,都为1小时40分钟,并且离开博物馆开始往家走的准确时间应为8∶50+1∶30 = 10∶20,所以回到家里的时间应为10∶20+1∶40 = 12。这时,应将闹钟拨到12时才是准确的。
为什么少了1元?
解答:苹果每千克1元,梨每千克 元,混合后每千克(1+ )÷2= 元,而小明2.5千克只收2元,即每千克只收 元。这样,每千克少收 - = 元。苹果和梨一共30千克,就少收了1元。
2013-08-29
展开全部
1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道
2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.
3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。
6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。
把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。
答案:663
答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道
2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?
答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.
3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?
答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。
4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雄、兔各几何?
原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。
设x为雉数,y为兔数,则有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根据这组公式很容易得出原题的答案:兔12只,雉22只。
5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。
6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。
把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。
答案:663
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |