微分的导数

 我来答
郦闳te
2016-05-10
知道答主
回答量:84
采纳率:0%
帮助的人:11.7万
展开全部

正弦函数的导数
假设正弦函数y=sin x(x的单位为弧度)上有一点(x,y)和另一点(x+δx,y+δy):
d/dx(sin x)
=limδx→0 δy/δx
=limδx→0 [sin (x+δx)-sin x]/δx
=limδx→0 2[cos 0.5(2x+δx)][sin 0.5(δx)]/δx (sin A-sin B=2[cos 0.5(A+B)][sin 0.5(A-B)])
=limδx→0 [cos 0.5(2x+δx)][sin 0.5(δx)]/0.5δx (两边除以2)
=limδx→0 [cos 0.5(2x+δx)]×[sin 0.5(δx)]/0.5δx
=limδx→0 [cos 0.5(2x+δx)]×limδx→0 [sin 0.5(δx)]/0.5δx
=cos 0.5(2x)×1 (limθ→0 (sin θ)/θ=1)
=cos x
最后得出d/dx(sin x)=cos x。
余弦函数的导数
我们知道cos x=sin(π/2-x),所以d/dx(cos x)=d/dx[sin (π/2-x)]。
假设π/2-x=u,我们可以用连锁律对余弦函数y=cos x求导:
d/dx(cos x)
=d/dx[sin (π/2-x)]
=d/du[sin (π/2-x)]×d/dx(π/2-x) (连锁律)
=cos (π/2-x)×(-1) (d/dx(sin x)=cos x)
=-cos (π/2-x)
=-sin x (cos (π/2-x)=sin x)
最后得出d/dx(cos x)=-sin x 。
正切函数的导数
由于正切函数tan x=(sin x)/(cos x),我们可以用除法律对其求导:
d/dx(tan x)
=d/dx[(sin x)/(cos x)] (tan x=(sin x)/(cos x))
=[(cos x)d/dx(sin x)-(sin x)d/dx(cos x)]/(cos^2 x) (除法律)
=[cos^2 x-(sin x)(-sin x)]/cos^2 x
=(cos^2 x+sin^2 x)/cos^2 x
=1/cos^2 x
=sec^2 x
最后得出d/dx(tan x)=sec^2 x。
三角函数的应用1
当我们遇到y=sin/cos/tan u(u是自变量为x的函数且常为ax+b的形式)这类函数的时候,可以使用连锁律求导:
①y=sin u
d/dx(sin u)
=(dy/du)(du/dx) (连锁律)
=(cos u)(du/dx)
当u的形式为ax+b时,du/dx=a,所以:
d/dx[sin(ax+b)]=a[cos(ax+b)]
②y=cos
当u的形式为ax+b时,du/dx=a,所以:
d/dx[cos(ax+b)]=-a[sin(ax+b)]
③y=tan u
d/dx(tan u)
=(dy/du)(du/dx) (连锁律)
=(sec^2 u)(du/dx)
当u的形式为ax+b时,du/dx=a,所以:
d/dx[tan(ax+b)]=a[sec^2(ac+b)]
三角函数的应用2
有时我们需要对y=sin^n x或y=cos^n x(n为常数)这类函数求导,使用连锁律也可以解决:
这里我们使用“连锁律的应用1”中得到的公式:d/dx(y^n)=[ny^(n-1)](dy/dx)
①y=sin^n x
dy/dx
=n[sin^(n-1) x]d/dx(sin x)
=n[sin^(n-1) x](cos x)
②y=cos^n x
dy/dx
=n[cos^(n-1) x]d/dx(cos x)
=-n[cos^(n-1) x](sin x)
得出公式:
d/dx(sin^n x)=n[sin^(n-1) x](cos x)
d/dx(cos^n x)=-n[cos^(n-1) x](sin x) 自然指数函数的导数
在画图软件里,我们可以看出在函数y=e^x上任意一点(x,y)的斜率均等于y。也就是说,m=dy/dx=y。
因此,函数e^x的导数由以下公式获得
证明:y=e^x,
y+dy=e^(x+dx),
dy=e^(x+dx)-e^x
=e^x(e^dx-1)
=e^x(1+dx+dx^2/2!+……+dx^n/n!-1){e^a=1+a+a^n/n!(n∈N)}
≈dxe^x
∴d/dx(e^x)=e^x
自然指数函数的应用
我们可以使用连锁律对y=e^u(u是自变量为x的函数)求导:
dy/dx
=(dy/du)(du/dx) (连锁律)
=[d/du(e^u)](du/dx)
=(e^u)(du/dx)
最后得出:
d/dx(e^u)=(e^u)(du/dx)
如果u的形式为ax+b(a和b均为常数),那么du/dx=a,可以得出:
d/dx[e^(ax+b)]=ae^(ax+b)
自然对数函数的导数
我们可以通过d/dx(e^x)=e^x对自然对数函数y=ln x求导:
y=ln x
x=e^y
d/dx(x)=d/dx(e^y)
d/dx(x)=d/dy(e^y)(dy/dx) (连锁律)
d/dx(x)=(e^y)(dy/dx)
(e^y)(dy/dx)=1
x(dy/dx)=1 (x=e^y)
dy/dx=1/x
最后得出:
d/dx(ln x)=1/x
自然对数函数的应用
我们可以使用连锁律对y=ln u(u是自变量为x的函数)求导:
dy/dx
=(dy/du)(du/dx) (连锁律)
=[d/du(ln u)](du/dx)
=(1/u)(du/dx)
可以得出:
d/dx(ln u)=(1/u)(du/dx)
如果u的形式为ax+b(a和b均为常数),那么du/dx=a,可以得出:
d/dx[ln (ax+b)]=a/(ax+b) 三角函数
d/dx(sin x)=cos x
d/dx(cos x)=-sin x
d/dx(tan x)=sec^2 x
d/dx[sin(ax+b)]=a[cos(ax+b)]
d/dx[cos(ax+b)]=-a[sin(ax+b)]
d/dx[tan(ax+b)]=a[sec^2(ax+b)]
d/dx(sin^n x)=n[sin^(n-1) x](cos x)
d/dx(cos^n x)=-n[cos^(n-1) x](sin x)
自然指数函数
d/dx(e^x)=e^x
d/dx(e^u)=(e^u)(du/dx)
d/dx[e^(ax+b)]=ae^(ax+b)
自然对数函数
d/dx(ln x)=1/x
d/dx(ln u)=(1/u)(du/dx)
d/dx[ln (ax+b)]=a/(ax+b)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式