17.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,

(1)a=2bsinA.求cosA+sinC的取值范围.(2)求B的大小;... (1)a=2bsinA. 求cosA+sinC的取值范围.
(2)求B的大小;
展开
 我来答
匿名用户
2013-08-31
展开全部
1、因为B=30°,而ABC为锐角三角形,A+C=180°-30°=150°,所以,要得出答案,就要用上这个已知条件。
cosA=sin(90°-A)
sicC=sin(180°-B-A)
cosA+sicC=sin(90°-A)+sin(180°-B-A)
利用三角函数的关系:sinα+sinβ=2sin[(α+β)/2]·cos[(α+β)/2]得:
cosA+sicC=sin(90°-A)+sin(180°-B-A)
=2sin{[(90°-A)+ (180°-B-A)]/2}]·cos{[(90°-A)-(180°-B-A)]/2}
=2sin(120°-A)·cos(-30°)
=√3sin(120°-A)…………………………………………………………(1)式
因为A是锐角,即0<A<90°
所以30°<120°-A<120°
所以1/2<sin(120°-A)<1
所以√3/2<√3sin(120°-A)<√3
所以cosA+sicC的取值范围是(√3/2,√3)
2、过C点作AB的垂线CD,其中CD交AB于D点。
则在三角形ACD中,CD=ACsinCAD=bsinA
在三角形BCD中,BC=a=2bsinA
所以sinB=CD/BC=bsinA/2bsinA=1/2
因为三角形ABC是锐角三角形,所以,角B是锐角,而sinB=1/2,B=30°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-08-31
展开全部
因:a=2bsinA
b/sinB=a/sinA=2b
sinB=1/2
B=30度,或150度
所以:cos((B/2)-45度)=cos(-30度)=(根号3)/2
或,cos((B/2)-45度)=cos(30度)=(根号3)/2

cosA+sinC=sin(90度-A)+sinC=2sin(45度-((A-C)/2))*cos(45度-((A+C)/2))
=2sin(45度-((A-C)/2))*cos((B/2)-45度)
=(根号3)*sin(45度-((A-C)/2))
当(A-C)/2=-45度, C-A=90度,cosA+sinC为最大值:根号3

A-C=(A+C)-2C=180度-B-2C<180度-B<=180度-30度
(A-C)/2<75度
45度-((A-C)/2)>45度-75度
45度-((A-C)/2)>-30度
所以:cosA+sinC>(根号3)*sin(-30度)
cosA+sinC>-(根号3)/2

综合以上,得: -(根号3)/2<cosA+sinC<=根号3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式