如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.(1)

(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.BG⊥AC,垂足为G,打错了不用三角函... (1)求证:△ABE∽△ECF;
(2)找出与△ABH相似的三角形,并证明;
(3)若E是BC中点,BC=2AB,AB=2,求EM的长.BG⊥AC ,垂足为G,打错了
不用三角函数怎么解
展开
mbcsjs
2013-08-29 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部
1、∵ABCD是矩形
∴∠ABE=∠FCE=90°
∵EF⊥AE
∴∠AEF=90°
∴∠AEB+∠FEC=90°
∵∠BAE+∠AEB=90°
∴∠FEC=∠BAE
∴△ABE∽△ECF
2、∵∠FEC=∠BAE
∴∠MEC=BAH
∵BG⊥AC即∠BGC=90°
∴∠GBC+∠BCG=90°
∵∠ABG+∠GBC=90°
∴∠ABG=∠BCG
∴∠ABH=∠ECM
∴△ABH∽△ECM
3、∵E是BC中点(BE=EC=2)
BC=2AB
∴AB=EC=2
∴△ABH≌△ECM(ASA)
∴EM=AH
延长BG交AD于N
∵∠ABC=90°,BG⊥AC
∴易得△ABG∽△ABC
∴AB²=AG×AC (AC²=AB²+BC²=2²+4²=20)
∴AG=2²/√20=2√5/5
CG=2√5-2√5/5=8√5/5
∴AG/CG=(2√5/5)/(8√5/5)=1/4
∵△AGN∽△BGC
∴AN/BC=AG/CG=1/4
∴AN=1
∵AE²=AB²+BE²=2²+2²
AE=2√2
∵AHN∽△BHE
∴AN/BE=AH/HE=1/2
∴AH/AE=1/3
AH=1/3AE=2√2/3
硪丨暧恋
2013-08-29 · TA获得超过8980个赞
知道大有可为答主
回答量:5336
采纳率:93%
帮助的人:2189万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式