
设函数f(x)=x-1/x,对任意x∈[1,∞),f(mx)+mf(x)<0恒成立,则实数M的取值范围是
设函数f(x)=x-1/x,对任意x∈[1,∞),f(mx)+mf(x)<0恒成立,则实数M的取值范围是讲详细些,谢谢...
设函数f(x)=x-1/x,对任意x∈[1,∞),f(mx)+mf(x)<0恒成立,则实数M的取值范围是讲详细些,谢谢
展开
展开全部
mx-1/mx+m(x-1/x)<0
2mx-(m+1/m)/x<0
2mx²<(m+1/m)
若m>0
1/2(1+1/m²)>x²不可能对任意x∈[1,∞)无解
若m<0
1/2(1+1/m²)<x²≤1,的m<-1
故实数m取值范围为m<-1
2mx-(m+1/m)/x<0
2mx²<(m+1/m)
若m>0
1/2(1+1/m²)>x²不可能对任意x∈[1,∞)无解
若m<0
1/2(1+1/m²)<x²≤1,的m<-1
故实数m取值范围为m<-1
展开全部
f(mx)+mf(x)=mx-1/mx +mx-m/x=2mx-(m+ 1/m)/x<0,
[2mx²- (m²+1)/m]/x<0对x∈[1,∞)恒成立,
就是二次函数g(x)=2mx²- (m²+1)/m在x∈[1,∞)上恒小于0,而图像对称轴在Y轴上.
若m>0,则g(x)开口向上,不满足.
若m<0,则g(x)开口向下,且顶点- (m²+1)/m>0,要求g(1)<0,
代入得2m- (m²+1)/m<0,所以2m²- m²-1>0,解得m<-1,
综合上面两种情况得m<-1
[2mx²- (m²+1)/m]/x<0对x∈[1,∞)恒成立,
就是二次函数g(x)=2mx²- (m²+1)/m在x∈[1,∞)上恒小于0,而图像对称轴在Y轴上.
若m>0,则g(x)开口向上,不满足.
若m<0,则g(x)开口向下,且顶点- (m²+1)/m>0,要求g(1)<0,
代入得2m- (m²+1)/m<0,所以2m²- m²-1>0,解得m<-1,
综合上面两种情况得m<-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询