十字相乘
1个回答
展开全部
字相乘法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。十字相乘法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法f分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)χ+pq=(χ+p)(χ+q)。
例:(^2代表平方)
a^2x^2+ax-42
首先,我们看看第一个数,是a^2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?)
然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2
首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者。
然后,在确定是-7×6还是7×-6.
(a×-7))×(a×+6)=a^2-a-42(计算过程省略,)
得到结果与原来结果不相符,原式+a 变成了-a
再算:
(a×+7)×(a×+(-6))=a^2+a-42
正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.
例:(^2代表平方)
a^2x^2+ax-42
首先,我们看看第一个数,是a^2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?)
然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2
首先,21和2无论正负,合并后都不可能是1 只可能是-19或者19,所以排除后者。
然后,在确定是-7×6还是7×-6.
(a×-7))×(a×+6)=a^2-a-42(计算过程省略,)
得到结果与原来结果不相符,原式+a 变成了-a
再算:
(a×+7)×(a×+(-6))=a^2+a-42
正确,所以a^2x^2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询