2013-08-30
展开全部
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数= 1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a
2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体 积=棱长×棱长×棱长 V=a×a×a
3、长方形:
C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4、长方体 V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形
s面积 a底 h高 面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6、平行四边形:s面积 a底 h高 面积=底×高 s=ah
7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形:S面 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r
(2)面积=半径×半径×∏
9、圆柱体:v体积 h:高 s:底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积×高÷3
总数÷总份数=平均数
</SPAN></FONT> 和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
</SPAN></FONT> 盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 闰年 2月29天
平年全年365天, 闰年全年366天
1日=24小时 1小时=60分
1分=60秒 1小时=3600秒
小学数学几何形体周长 面积 体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数= 1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a
2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体 积=棱长×棱长×棱长 V=a×a×a
3、长方形:
C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4、长方体 V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形
s面积 a底 h高 面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6、平行四边形:s面积 a底 h高 面积=底×高 s=ah
7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形:S面 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r
(2)面积=半径×半径×∏
9、圆柱体:v体积 h:高 s:底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10、圆锥体:v体积 h高 s底面积 r底面半径 体积=底面积×高÷3
总数÷总份数=平均数
</SPAN></FONT> 和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
</SPAN></FONT> 盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 闰年 2月29天
平年全年365天, 闰年全年366天
1日=24小时 1小时=60分
1分=60秒 1小时=3600秒
小学数学几何形体周长 面积 体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
展开全部
手脑并用是提高创新意识的有效方法。学生的实际动手能力是衡量人才的重要重要指标,是从小学会学习、学会生活的重要内容。在教学中,可以引导学生利用实际操作这项活动来帮助学生掌握知识,具有创造性、开拓性。符合国家关于活动课开设的目的和意义。有利于数学教学的辅助过程,有利于创新能力的培养。在教学活动中,教师要注重提供各种机会让学生参与活动,使学生在参与过程中掌握方法,促进思维的发展。教学中,经常设置一些悬念性的问题,鼓励学生探索,唤起学生创新意识,改变教师的主体。学生的创新潜能得到挖掘,逐步形成创新能力。
优化教学模式,深化创新意识培养:传统意义上教学的几个重要的环节一般是:导入新课—新授—巩固练习—布置作业。经过多年的改进,形式虽然有变化,但实质却没有什么改动。其实,课堂不必套用这个模式,对小学来说,一本正经的像对成人那样传授知识,未免太呆板了些。活动教学、游戏教学、发现教学、探究教学、数学建模教学、竞赛教学,根据不同的教学内容,都是可以采取的。比如:导入这一环节,完全可以用昀新的教学词汇—创设情境来表示和演绎,情境是教师和学生共同面对的,它必然会起到导入的作用,但更重要的是面对着一个问题,借以引起学生的兴趣,激发学生的求知欲望,培养寻求解决问题的不同方法的意识。再比如:新授这一环节,完全可以改成探索与讨论,而巩固环节可以换成实践与反思等等,这些改变并不是换换词语那样简单,更重要的是教学观念的改变与教学方式的更新,通过这些改变增强学生的主动性,从而更好的提高学生创新意识。
3
小学数学方法二
动手操作的策略:例如:教学四年级下册第五单元《三角形》中《三角形边的关系》时,我让学生自己探索任意三根小棒能否围成三角形,先猜想,再让学生动手操作试围,验证自己的猜想。实验结果有所不同,这样使学生在具体的操作过程中产生思维冲突,从而提出数学问题“为什么有的能围成,有的围不成呢?”,有效地激发了学生进一步探究的欲望,在进一步的探索交流中得出结论,即较短两条边的和等于或小于第三边时不能围成三角形,只有较短两边的和大于第三边时才能围成三角形。
再如:教学《三角形的内角和》一课时,根据学生已有的知识经验和生活经验,课前有一部分学生就能说出三角形内角和是180°这一知识点。但是如何让学生明白为什么三角形的内角和是180°,而不是仅仅知道这个结论而已。教学中我引导学生通过量一量、算一算、剪一剪、拼一拼、折一折等一系列操作活动,找到了几种验证三角形内角和是180°的方法,学生通过动手操作,自主探究得出结论后,体验到了成功的喜悦。还有我在教《梯形的面积》时,引导学生探究“怎样计算梯形的面积?”这一问题时,我给学生提供了硬纸片的梯形学具,把实际操作策略的选择权留给学生,学生将这个问题转化为一个已知的问题进行推导研究。学生在自主探索实现操作策略的多样化:有的学生将它剪为两个三角形;有的通过割、补将它转化为长方形;或者把两个完全一样的梯形拼成一个平行四边形。这种开放性的操作策略,不仅有可能获得问题解决,而且还能培养学生的创造性思维。
优化教学模式,深化创新意识培养:传统意义上教学的几个重要的环节一般是:导入新课—新授—巩固练习—布置作业。经过多年的改进,形式虽然有变化,但实质却没有什么改动。其实,课堂不必套用这个模式,对小学来说,一本正经的像对成人那样传授知识,未免太呆板了些。活动教学、游戏教学、发现教学、探究教学、数学建模教学、竞赛教学,根据不同的教学内容,都是可以采取的。比如:导入这一环节,完全可以用昀新的教学词汇—创设情境来表示和演绎,情境是教师和学生共同面对的,它必然会起到导入的作用,但更重要的是面对着一个问题,借以引起学生的兴趣,激发学生的求知欲望,培养寻求解决问题的不同方法的意识。再比如:新授这一环节,完全可以改成探索与讨论,而巩固环节可以换成实践与反思等等,这些改变并不是换换词语那样简单,更重要的是教学观念的改变与教学方式的更新,通过这些改变增强学生的主动性,从而更好的提高学生创新意识。
3
小学数学方法二
动手操作的策略:例如:教学四年级下册第五单元《三角形》中《三角形边的关系》时,我让学生自己探索任意三根小棒能否围成三角形,先猜想,再让学生动手操作试围,验证自己的猜想。实验结果有所不同,这样使学生在具体的操作过程中产生思维冲突,从而提出数学问题“为什么有的能围成,有的围不成呢?”,有效地激发了学生进一步探究的欲望,在进一步的探索交流中得出结论,即较短两条边的和等于或小于第三边时不能围成三角形,只有较短两边的和大于第三边时才能围成三角形。
再如:教学《三角形的内角和》一课时,根据学生已有的知识经验和生活经验,课前有一部分学生就能说出三角形内角和是180°这一知识点。但是如何让学生明白为什么三角形的内角和是180°,而不是仅仅知道这个结论而已。教学中我引导学生通过量一量、算一算、剪一剪、拼一拼、折一折等一系列操作活动,找到了几种验证三角形内角和是180°的方法,学生通过动手操作,自主探究得出结论后,体验到了成功的喜悦。还有我在教《梯形的面积》时,引导学生探究“怎样计算梯形的面积?”这一问题时,我给学生提供了硬纸片的梯形学具,把实际操作策略的选择权留给学生,学生将这个问题转化为一个已知的问题进行推导研究。学生在自主探索实现操作策略的多样化:有的学生将它剪为两个三角形;有的通过割、补将它转化为长方形;或者把两个完全一样的梯形拼成一个平行四边形。这种开放性的操作策略,不仅有可能获得问题解决,而且还能培养学生的创造性思维。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-30
展开全部
速度*时间=路程 工作效率*工作时间=工作总量
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-30
展开全部
速度*时间=路程 工作效率*工作时间=工作总量 追击路程=速度差*追击时间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-30
展开全部
利润=总金额-进价 利润率=利润/进价 体积=底面积*高 四边形面积=底*高 S三角形=1/2底*高
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询