求解一道数学题

(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,... (2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数. 展开
刘家奇365
2013-08-30 · TA获得超过716个赞
知道答主
回答量:91
采纳率:0%
帮助的人:87.8万
展开全部

解:(1)不成立.结论是∠BPD=∠B+∠D
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED
又∵∠BPD=∠BED+∠D,

∴∠BPD=∠B+∠D.

(2)结论:∠BPD=∠BQD+∠B+∠D.

(3)连接EG并延长,
根据三角形的外角性质,∠AGB=∠A+∠B+∠E,
又∵∠AGB=∠CGF,
在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.

百度网友126acca
2013-08-30 · TA获得超过1555个赞
知道小有建树答主
回答量:371
采纳率:100%
帮助的人:287万
展开全部
您好:

解:(1)不成立.结论是∠BPD=∠B+∠D
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.

(2)结论:∠BPD=∠BQD+∠B+∠D.

(3)连接EG并延长到点N,
由图象可知:∠AGB=∠A+∠B+∠E
又∵∠AGB=∠CGF,
在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.

如果本题有什么不明白可以追问,如果满意请点击“采纳为满意回答”
方法错误、计算错误,请评论.我将会立刻修正。答题不易,请谅解,谢谢。
祝学习进步!
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式