高中数学题解答
已知向量a=(1+cosa,sina),b=(1-cosB,sinB),c=(1,0).a属于0~兀,B属于兀~2兀,向量a与c的夹角为m1,向量b与c的夹角为m2,且m...
已知向量a=(1+cosa,sina),b=(1-cosB,sinB),c=(1,0).a属于0~兀,B属于兀~2兀,向量a与c的夹角为m1,向量b与c的夹角为m2,且m1一m2=30度,求sin角(a一b)/4的值
展开
2个回答
展开全部
a·c=(1+cosα,sinα)·(1,0)
=1+cosα=2cos(α/2)^2
|a|^2=(1+cosα)^2+sinα^2
=2+2cosα
=4cos(α/2)^2
α∈(0,π),
所以α/2∈(0,π/2)
|a|=2cos(α/2)
cos<a,c>=a·c/(|a|*|c|)=2cos(α/2)^2/(2cos(α/2))
=cos(α/2)
故:<a,c>=α/2
b·c=(1-cosβ,sinβ)·(1,0)
=1-cosβ=2sin(β/2)^2
|b|^2=(1-cosβ)^2+sinβ^2
=2-2cosβ
=4sin(β/2)^2
β∈(π,2π),
所以β/2∈(π/2,π)
|b|=2sin(β/2)
cos<b,c>=b·c/(|b|*|c|)=2sin(β/2)^2/(2sin(β/2))
=sin(β/2)=cos(π/2-β/2)=cos(β/2-π/2)
β/2∈(π/2,π),
即:β/2-π/2∈(0,π/2)
<b,c>=β/2-π/2
α/2-β/2+π/2=π/6
(α-β)/2=-π/3
(α-β)/4=-π/6
sin((α-β)/4)=-1/2
=1+cosα=2cos(α/2)^2
|a|^2=(1+cosα)^2+sinα^2
=2+2cosα
=4cos(α/2)^2
α∈(0,π),
所以α/2∈(0,π/2)
|a|=2cos(α/2)
cos<a,c>=a·c/(|a|*|c|)=2cos(α/2)^2/(2cos(α/2))
=cos(α/2)
故:<a,c>=α/2
b·c=(1-cosβ,sinβ)·(1,0)
=1-cosβ=2sin(β/2)^2
|b|^2=(1-cosβ)^2+sinβ^2
=2-2cosβ
=4sin(β/2)^2
β∈(π,2π),
所以β/2∈(π/2,π)
|b|=2sin(β/2)
cos<b,c>=b·c/(|b|*|c|)=2sin(β/2)^2/(2sin(β/2))
=sin(β/2)=cos(π/2-β/2)=cos(β/2-π/2)
β/2∈(π/2,π),
即:β/2-π/2∈(0,π/2)
<b,c>=β/2-π/2
α/2-β/2+π/2=π/6
(α-β)/2=-π/3
(α-β)/4=-π/6
sin((α-β)/4)=-1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询