考研高数题
3个回答
展开全部
由于
2^(x^2) - 1 = e^[(x^2)ln2] - 1 ~(x^2)ln2 (x→0),
e^(3x) - 1 ~3x (x→0),
√(1+3x^3) - 1 ~ (1/2)(3x^3) (x→0),
所以
g.e. = lim(x→0){∫[0, (sinx)^2]ln[1+(t^2)]dt}/[(x^2)ln2*(3x)*(1/2)(3x^3)] (等价无穷小替换)
= [2/(9ln2)]lim(x→0){∫[0, (sinx)^2]ln[1+(t^2)]dt}/(x^6) (0/0,用L'Hospital法则)
= [2/(9ln2)]lim(x→0){ln[1+(sinx)^4]*2sinxcosx}/(6x^5)
= [4/(9ln2)]lim(x→0){[(sinx)^4]*sinxcosx}/(6x^5) (等价无穷小替换)
= [4/(9ln2)]/6
= ……
2^(x^2) - 1 = e^[(x^2)ln2] - 1 ~(x^2)ln2 (x→0),
e^(3x) - 1 ~3x (x→0),
√(1+3x^3) - 1 ~ (1/2)(3x^3) (x→0),
所以
g.e. = lim(x→0){∫[0, (sinx)^2]ln[1+(t^2)]dt}/[(x^2)ln2*(3x)*(1/2)(3x^3)] (等价无穷小替换)
= [2/(9ln2)]lim(x→0){∫[0, (sinx)^2]ln[1+(t^2)]dt}/(x^6) (0/0,用L'Hospital法则)
= [2/(9ln2)]lim(x→0){ln[1+(sinx)^4]*2sinxcosx}/(6x^5)
= [4/(9ln2)]lim(x→0){[(sinx)^4]*sinxcosx}/(6x^5) (等价无穷小替换)
= [4/(9ln2)]/6
= ……
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询