如图,在平面直角坐标系中,直线AB分别与x轴、y轴交于B、A两点,且OB=2OA。S▷ABC=16
如图,在平面直角坐标系中,直线AB分别与x轴、y轴交于B、A两点,且OB=2OA。S▷ABC=16(1)求直线AB的解析式。(2)若以OA为一边作如图所示的正...
如图,在平面直角坐标系中,直线AB分别与x轴、y轴交于B、A两点,且OB=2OA。S▷ABC=16
(1)求直线AB的解析式。
(2)若以OA为一边作如图所示的正方形AOCD,CD交AB于点P,问在x轴上是否存在一点Q,使以P、C、Q为顶点三角形与▷ADP相似?若存在,求点Q的坐标,若不存在,说明理由。 展开
(1)求直线AB的解析式。
(2)若以OA为一边作如图所示的正方形AOCD,CD交AB于点P,问在x轴上是否存在一点Q,使以P、C、Q为顶点三角形与▷ADP相似?若存在,求点Q的坐标,若不存在,说明理由。 展开
2个回答
展开全部
解:(1)∵OB=2OA,S△ABC=16,
∴1/2OA×OB=16,
∴1/2×OA×2OA=16,
∴OA=4,OB=8,
即A(0,4)B(-8,0),
设直线AB的解析式是y=kx+b,
代入得:4=b,
0=-8+b
解得:k=1/2,
故直线AB的解析式是y=1/2x+4;
(2)在x轴上存在一点Q,使以P、C、Q为顶点的三角形与△ADP相似,
理由是:∵四边形ADCO是正方形,A(0,4),
∴∠D=∠DC0=90°=∠PCB,AD∥OC,AD=OC=DC=OA=4,
∴BC=4=AD,
∵AD∥OC,
∴∠DAP=∠CBP,
在△ADP和△BCP中,
∠D=∠PCB
AD=BC
∠DAP=∠CBP
∴△ADP≌△BCP(ASA),
∴DP=CP=2,
∵Q在x轴上,
∴以P、C、Q为顶点的三角形与△ADP相似,
首先有∠ADP=∠PDQ=90°,
故只有当具备条件AD/DP=PC/CQ或AD/DP=CQ/PC时,两三角形就相似,
即4/2=2/CQ或4/2=CQ/24/2
解得:CQ=1或CQ=4,
即符合条件的点有4个:当CQ=1时,点Q的坐标是(-3,0)或(-1,0);
当CQ=4时,点Q的坐标是(-6,0)或(2,0).
展开全部
(1) OA = 2OB, A(0, a), a > 0, B(-2a, 0)
S = (1/2)OB*OA = (1/2)*a*2a = a² = 16
a = 4
A(0, 4), B(-8, 0)
直线AB的解析式: x/(-8) + y/4 = 1, x - 2y + 8 = 0
(2)CD: x = -4
P(-4, 2)
PD = 2
三角形ADP是直角边之比为2:1的直角三角形。
CP = 2, PQ = 1或PQ = 4
(i) PQ = 1
Q(-3, 0)或(-5, 0)
(ii) PQ = 4
Q(-8, 0)或(0, 0)
S = (1/2)OB*OA = (1/2)*a*2a = a² = 16
a = 4
A(0, 4), B(-8, 0)
直线AB的解析式: x/(-8) + y/4 = 1, x - 2y + 8 = 0
(2)CD: x = -4
P(-4, 2)
PD = 2
三角形ADP是直角边之比为2:1的直角三角形。
CP = 2, PQ = 1或PQ = 4
(i) PQ = 1
Q(-3, 0)或(-5, 0)
(ii) PQ = 4
Q(-8, 0)或(0, 0)
追问
如果bc=4 ao=4 则三角形abc的面积为8与题目不相符。
追答
我看错了,当成了三角形ABO的面积. 但题目很奇怪:(2)中才提到的来历,为什么开始会有三角形ABC的面积?是不是敲错了?如果的确是三角形ABO的面积,则原答案无误(但将(1)中的OA = 2OB改为OB = 2OA)
如果的确是三角形ABC的面积:
(a) A(0, a), B(-2a, 0), C(-a, 0), a > 0
S = (1/2)BC*OA = (1/2)(-a + 2a)*a = a²/2 = 16
a = 4√2
AB: x - 2y + 8√2 = 0
(2)
CD: x = -4√2
C(-4√2, 2√2)
PD = CD = 2√2, DA = 4√2
三角形ADP是直角边之比为2:1的直角三角形。
CP = 2√2, PQ = √2或PQ = 4√2
(i) PQ = √2
Q(-3√2, 0)或(-5√2, 0)
(ii) PQ = 4√2
Q(-8√2, 0)或(0, 0)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询