这个公式怎么证明 20
2个回答
展开全部
C(m,n) = n(n-1)(n-2)...(n-m+1) / m!
C(m,n-1) = (n-1)(n-2)...(n-1-m+1) / m! = (n-1)(n-2)...(n-m) / m!
C(m-1,n-1) = (n-1)(n-2)...[n-1-(m-1)+1] / (m-1)! = (n-1)(n-2)...(n-m+1) / (m-1)!
右 = (n-1)(n-2)...(n-m) / m! + (n-1)(n-2)...(n-m+1) / (m-1)!
= (n-1)(n-2)...(n-m) / m! + (n-1)(n-2)...(n-m+1)*m / m(m-1)!
= (n-1)(n-2)...(n-m) / m! + (n-1)(n-2)...(n-m+1)*m / m!
= [ (n-1)(n-2)...(n-m) + (n-1)(n-2)...(n-m+1)*m ] / m!
= (n-1)(n-2)...(n-m+1)*[ (n-m) + m ] / m!
= (n-1)(n-2)...(n-m+1)* n / m!
= 左
证明完毕
C(m,n-1) = (n-1)(n-2)...(n-1-m+1) / m! = (n-1)(n-2)...(n-m) / m!
C(m-1,n-1) = (n-1)(n-2)...[n-1-(m-1)+1] / (m-1)! = (n-1)(n-2)...(n-m+1) / (m-1)!
右 = (n-1)(n-2)...(n-m) / m! + (n-1)(n-2)...(n-m+1) / (m-1)!
= (n-1)(n-2)...(n-m) / m! + (n-1)(n-2)...(n-m+1)*m / m(m-1)!
= (n-1)(n-2)...(n-m) / m! + (n-1)(n-2)...(n-m+1)*m / m!
= [ (n-1)(n-2)...(n-m) + (n-1)(n-2)...(n-m+1)*m ] / m!
= (n-1)(n-2)...(n-m+1)*[ (n-m) + m ] / m!
= (n-1)(n-2)...(n-m+1)* n / m!
= 左
证明完毕
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询