fx二阶导数小于零,f(0)=0,试证,对任意二正数x1,x2,恒有f(x1+x2)<f(x1)+f(x2)

爱我犬夜叉
2013-08-31 · TA获得超过795个赞
知道小有建树答主
回答量:647
采纳率:84%
帮助的人:454万
展开全部
∵f‘’(x)<0
∴在f(x)的定义域内的一阶导数单调递减,并且在定义域内连续
对于任意的正数x1,x2,不妨设0<x1<x2<x1+x2
在(0,x1)上,由微分中值定理得存在ξ1∈(0,x1),使得f'(ξ1)=[f(x1)-f(0)]/[(x1)-0]=f(x1)/x1
在(x2,x1+x2)上,由微分中值定理得存在ξ2∈(x2,x1+x2)
使得f'(ξ2)=[f(x1+x2)-f(x2)]/[(x1+x2)-x2]=[f(x1+x2)-f(x2)]/x1
∵ξ1<ξ2
∴f'(ξ1)>f'(ξ2)
即f(x1)/x1>[f(x1+x2)-f(x2)]/x1
又∵x1>0
∴f(x1+x2)-f(x2)<f(x1)
即f(x1+x2)<f(x1)+f(x2),对任意二正数x1,x2恒成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式