展开全部
1、2(x+1/x)²-4-3(x+1/x)-1=0
2(x+1/x)²-3(x+1/x)-5=0
1 1
2 -5
所以x+1/x=-1或x+1/x=5/2
解得x=2或1/2
2、[(1-1/3)+(1/2-1/4)+(1/3-1/5)+...+(1/9-1/11)]/2=(1+1/2-1/10-1/11)/2=36/55
3、1/[n(n+1)(n+2)]={1/[n(n+1)]-1/[(n+1)(n+2)]}/2
所以左边={[1/(1*2)-1/(2*3)]+[1/(2*3)-1/(3*4)]+...+1/[n(n+1)]-1/[(n+1)(n+2)]}/2
={1/2-1/[(n+1)(n+2)]}/2
<1/4.
展开全部
2,解:2(x^2+1/x^2)-3(x+1/x)-1=0
2[(x+1/x)^2-2]-3(x+1/x)-1=0
2(x+1/x)^2-3(x+1/x)-5=0
[2(x+1/x)-5][(x+1/x)+1]=0
x+1/x=5/2
2x^2-5x+2=0
(2x-1)(x-2)=0
x1=1/2
x2=2
x+1/x+1=0
x^2+x+1=0(不合题意,应舍去)
经检验:X1=1/2 X2=2是原方程的解
解原式=21-(1/11)]+[(1/2)-(1/10)]
\2*(10/11)+2/5)
=(20/11)+(2/5)
=122/55
证明:左边=(n^2+3n)/4(n+1)(n+2)
因为n为正整数
n^2+3n+2>n^2+3n
所以(n+1)(n+2)>(n^2+3n)
(n^2+3n)/(n+1)(n+2)<1
(n^2+3n)/4(n+1)(n+2)<1/4
所以1/1x2x3+1/2x3x4+......+1/n(n+1)(n+2)<1/4
2[(x+1/x)^2-2]-3(x+1/x)-1=0
2(x+1/x)^2-3(x+1/x)-5=0
[2(x+1/x)-5][(x+1/x)+1]=0
x+1/x=5/2
2x^2-5x+2=0
(2x-1)(x-2)=0
x1=1/2
x2=2
x+1/x+1=0
x^2+x+1=0(不合题意,应舍去)
经检验:X1=1/2 X2=2是原方程的解
解原式=21-(1/11)]+[(1/2)-(1/10)]
\2*(10/11)+2/5)
=(20/11)+(2/5)
=122/55
证明:左边=(n^2+3n)/4(n+1)(n+2)
因为n为正整数
n^2+3n+2>n^2+3n
所以(n+1)(n+2)>(n^2+3n)
(n^2+3n)/(n+1)(n+2)<1
(n^2+3n)/4(n+1)(n+2)<1/4
所以1/1x2x3+1/2x3x4+......+1/n(n+1)(n+2)<1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2、2[(x+1/x)^2-2]-3(x+1/x)-1=0
2(x+1/x)^2-3(x+1/x)-5=0
[2(x+1/x)^2-5][(x+1/x)+1]=0
x+1/x=5/2或x+1/x=-1(无实数解)
x+1/x=5/2
2x^2-5x+2=0
(2x-1)(x-2)=0
x1=1/2,x2=2
3、原式=(1/1*3+1/3*5+1/5*7+1/7*9+1/9*11)+(1/2*4+1/4*6+1/6*8+1/8*10)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11)+1/2(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10)
=1/2(1-1/11+1/2-1/10)
=36/55
4、1/n(n+1)(n+2)=[1/n-1/(n+1)]*1/(n+2)
=1/n(n+2)-1/(n+1)(n+2)
=1/2[1/n-1/(n+2)]-[1/(n+1)-1/(n+2)]
所以不等式左边
=1/2[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+……+1/n-1/(n+2)]-[1/2-1/3+1/3-1/4+……+1/(n+1)-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]-[1/2-1/(n+2)]
=1/4-1/2(n+1)+1/2(n+2)
<1/4
原命题得证.
2(x+1/x)^2-3(x+1/x)-5=0
[2(x+1/x)^2-5][(x+1/x)+1]=0
x+1/x=5/2或x+1/x=-1(无实数解)
x+1/x=5/2
2x^2-5x+2=0
(2x-1)(x-2)=0
x1=1/2,x2=2
3、原式=(1/1*3+1/3*5+1/5*7+1/7*9+1/9*11)+(1/2*4+1/4*6+1/6*8+1/8*10)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11)+1/2(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10)
=1/2(1-1/11+1/2-1/10)
=36/55
4、1/n(n+1)(n+2)=[1/n-1/(n+1)]*1/(n+2)
=1/n(n+2)-1/(n+1)(n+2)
=1/2[1/n-1/(n+2)]-[1/(n+1)-1/(n+2)]
所以不等式左边
=1/2[1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+……+1/n-1/(n+2)]-[1/2-1/3+1/3-1/4+……+1/(n+1)-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]-[1/2-1/(n+2)]
=1/4-1/2(n+1)+1/2(n+2)
<1/4
原命题得证.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)令t=x+1/x,则原方程可化为:
2t²-2t-5=0
解得:t=-1或t=5/2
x+1/x=-1无解
x+1/x=5/2的解为x=2或x=1/2
所以,原方程的解为2、1/2
(2)原式=(1/2)(1-1/3)+(1/2)(1/2-1/4)+(1/2)(1/3-1/5)+...+(1/2)(1/9-1/11)
=(1/2)(1+1/2-1/10-1/11)
=36/55
(3)左边=(1/2)[1/(1×2)-1/(2×3)]+(1/2)[1/(2×3)-1/(3×4)]+...+(1/2)[1/(n(n+1))-1/((n+1)(n+2))]
=(1/2)[1/(1×2)-1/((n+1)(n+2))]
<(1/2)(1/2)
=1/4
2t²-2t-5=0
解得:t=-1或t=5/2
x+1/x=-1无解
x+1/x=5/2的解为x=2或x=1/2
所以,原方程的解为2、1/2
(2)原式=(1/2)(1-1/3)+(1/2)(1/2-1/4)+(1/2)(1/3-1/5)+...+(1/2)(1/9-1/11)
=(1/2)(1+1/2-1/10-1/11)
=36/55
(3)左边=(1/2)[1/(1×2)-1/(2×3)]+(1/2)[1/(2×3)-1/(3×4)]+...+(1/2)[1/(n(n+1))-1/((n+1)(n+2))]
=(1/2)[1/(1×2)-1/((n+1)(n+2))]
<(1/2)(1/2)
=1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一题一题来吧:
第一题:x^2+(1/x^2)=(x+1/x)^2-2, 设x+1/x=y;则2*(y^2-2)-3y-1=0; (y+1)*(2y-5)=0
y=-1或y=5/2;y=-1无解,y=5/2; x=2或x=1/2
第一题:x^2+(1/x^2)=(x+1/x)^2-2, 设x+1/x=y;则2*(y^2-2)-3y-1=0; (y+1)*(2y-5)=0
y=-1或y=5/2;y=-1无解,y=5/2; x=2或x=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询