复变函数数学题求解 5
1个回答
展开全部
z=1代入,0/0型,用罗比达法则:由于上划线不方便,改用‘表示。
=lim(z->1)[z+z'+2-1]/2z=3/2
原式=[z'(z-1)+2(z-1)]/[(z-1)(z+1)]
=(z'+2)/(z+1)
z->1,z'->1,
上式->(1+2)/(1+1)=3/2
设
z=a+bi
z'=a-bi
zz'=a²+b²
z²=a²-b²+2abi
z'=(a²+b²)/z
原式=(a²+b²+2a+2bi-a+bi-2)/(a²-b²+2abi-1)
=(a²+b²+a-2+3bi)/(a²-b²-1+2abi)
=(a²+b²+a-2+3bi)(a²-b²-1-2abi)/(a²-b²-1+2abi)(a²-b²-1-2abi)
={(a²+b²+a-2)(a²-b²-1)+6ab²+[3b(a²-b²-1)-2ab(a²+b²+a-2)]i}/[(a²-b²-1)²+4a²b²]
={a^4-a²b²-a²+b²a²-b^4-b²+a³-ab²-a-2a²+2b²+2+6ab²+[3a²b-3b³-3b-(2a³b+2ab³+2a²b-4ab)]i}/[a^4+b^4+1-2a²b²-2a²+2b²+4a²b²]
={a^4-3a²-b^4+b²+a³+5ab²-a+2+[a²b-3b³-3b-2a³b-2ab³+4ab]i}/[a^4+b^4+1+2a²b²-2a²+2b²]
={a^4-3a²-b^4+b²+a³+5ab²-a+2+[a²b-3b³-3b-2a³b-2ab³+4ab]i}/[a^4+b^4+1+2a²b²-2a²+2b²]
z->1~a->1,b->0
b->0,上式->{a^4-3a²+a³-a+2}/[a^4+1-2a²]
a->1,上式0/0型,用罗比达法则:
上式->{4a³-6a+3a²-1}/[4a³-4a],还是0/0型
->{12a²-6+6a}/[12a²-4]={12-6+6}/[12-4]=12/8=3/2
=lim(z->1)[z+z'+2-1]/2z=3/2
原式=[z'(z-1)+2(z-1)]/[(z-1)(z+1)]
=(z'+2)/(z+1)
z->1,z'->1,
上式->(1+2)/(1+1)=3/2
设
z=a+bi
z'=a-bi
zz'=a²+b²
z²=a²-b²+2abi
z'=(a²+b²)/z
原式=(a²+b²+2a+2bi-a+bi-2)/(a²-b²+2abi-1)
=(a²+b²+a-2+3bi)/(a²-b²-1+2abi)
=(a²+b²+a-2+3bi)(a²-b²-1-2abi)/(a²-b²-1+2abi)(a²-b²-1-2abi)
={(a²+b²+a-2)(a²-b²-1)+6ab²+[3b(a²-b²-1)-2ab(a²+b²+a-2)]i}/[(a²-b²-1)²+4a²b²]
={a^4-a²b²-a²+b²a²-b^4-b²+a³-ab²-a-2a²+2b²+2+6ab²+[3a²b-3b³-3b-(2a³b+2ab³+2a²b-4ab)]i}/[a^4+b^4+1-2a²b²-2a²+2b²+4a²b²]
={a^4-3a²-b^4+b²+a³+5ab²-a+2+[a²b-3b³-3b-2a³b-2ab³+4ab]i}/[a^4+b^4+1+2a²b²-2a²+2b²]
={a^4-3a²-b^4+b²+a³+5ab²-a+2+[a²b-3b³-3b-2a³b-2ab³+4ab]i}/[a^4+b^4+1+2a²b²-2a²+2b²]
z->1~a->1,b->0
b->0,上式->{a^4-3a²+a³-a+2}/[a^4+1-2a²]
a->1,上式0/0型,用罗比达法则:
上式->{4a³-6a+3a²-1}/[4a³-4a],还是0/0型
->{12a²-6+6a}/[12a²-4]={12-6+6}/[12-4]=12/8=3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询