高考数学函数求值域的十二种方法
展开全部
一.观察法
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
二.反函数法
当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x2+x+2)的值域。
四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
五.最值法
对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。
六.图象法
通过观察函数的图象,运用数形结合的方法得到函数的值域。
例6求函数y=∣x+1∣+√(x-2)2的值域。点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。
七.单调法
利用函数在给定的区间上的单调递增或单调递减求值域。
例7求函数y=4x-√1-3x(x≤1/3)的值域。
八.换元法
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。
例8求函数y=x-3+√2x+1的值域。
九.构造法
根据函数的结构特征,赋予几何图形,数形结合。
例9求函数y=√x2+4x+5+√x2-4x+8的值域。
十.比例法
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。
例10已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。
十一.利用多项式的除法
例11求函数y=(3x+2)/(x+1)的值域。
十二.不等式法
例12求函数Y=3x/(3x+1)的值域。
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
二.反函数法
当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x2+x+2)的值域。
四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
五.最值法
对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。
六.图象法
通过观察函数的图象,运用数形结合的方法得到函数的值域。
例6求函数y=∣x+1∣+√(x-2)2的值域。点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。
七.单调法
利用函数在给定的区间上的单调递增或单调递减求值域。
例7求函数y=4x-√1-3x(x≤1/3)的值域。
八.换元法
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。
例8求函数y=x-3+√2x+1的值域。
九.构造法
根据函数的结构特征,赋予几何图形,数形结合。
例9求函数y=√x2+4x+5+√x2-4x+8的值域。
十.比例法
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。
例10已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。
十一.利用多项式的除法
例11求函数y=(3x+2)/(x+1)的值域。
十二.不等式法
例12求函数Y=3x/(3x+1)的值域。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询