求含参数的十字相乘20道习题
y-35;
(3)18x2-21xy+5y2; (4)2(a+b) 2+(a+b)(a-b)-6(a-b) 2.
(1)2x2+3x+1; (2)2y2+y-6;
(3)6x2-13x+6; (4)3a2-7a-6;
(5)6x2-11xy+3y2; (6)4m2+8mn+3n2;
(7)10x2-21xy+2y2; (8)8m2-22mn+15n2.
(1)4n2+4n-15; (2)6a2+a-35;
(3)5x2-8x-13; (4)4x2+15x+9
(5)15x2+x-2; (6)6y2+19y+10;
(7)20-9y-20y2; (8)7(x-1) 2+4(x-1)(y+2)-20(y+2)
5 -4
1×(-4)+5×2=6
解 5x2+6xy-8y2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) 2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2
(3)18x2-21xy+5y2; (4)2(a+b) 2+(a+b)(a-b)-6(a-b) 2.
(1)2x2+3x+1; (2)2y2+y-6;
(3)6x2-13x+6; (4)3a2-7a-6;
(5)6x2-11xy+3y2; (6)4m2+8mn+3n2;
(7)10x2-21xy+2y2; (8)8m2-22mn+15n2.
(1)4n2+4n-15; (2)6a2+a-35;
(3)5x2-8x-13; (4)4x2+15x+9
(5)15x2+x-2; (6)6y2+19y+10;
(7)20-9y-20y2; (8)7(x-1) 2+4(x-1)(y+2)-20(y+2)