已知正整数数列an的前n项和为Sn,且对任意的正整数n满足2√Sn=an+1
2013-09-01
展开全部
解:∵2√Sn=an+1,当n=1时,2√S1=2√a1=a1+1∴4a1=(a1+1)�0�5=a1�0�5+2a1+1 ∴a1�0�5-2a1+1=0 ∴(a1—1)�0�5=0 ∴a1=1∴Sn=(an+1)�0�5 /4..........................①
当n≥2时,∴S(n-1)=(a(n-1)+1)�0�5 /4..........②①②两式相减,得:an=Sn-S(n-1)= 1/4·(an�0�5-a(n-1)�0�5)+ 1/2·(an-a(n-1))
化简得:(an+a(n-1))·(an-a(n-1)-2)=0,
由于任意an>0,∴a(n-1)>0,∴an+a(n-1)>0∴(an-a(n-1)-2=0, 即:(an-a(n-1)=2 (n≥2)即数列{an}是以1为首项,以2为公差的等差数列。∴an=1+2(n-1)=2n-1 ,(n∈N+)
.........................................................................................................2、解:由(1)知an=1+2(n-1)=2n-1 ,(n∈N+)
∴bn=1/【an·a(n+1)】=1/【(2n-1)(2n+1)】=(1/2)·【1/(2n-1)-1/(2n+1)】 ,(n∈N+).......................................................∴Tn=b1+b2+...............+bn=(1/2)·(1-1/3)+(1/2)·(1/3-1/5)+..........+=(1/2)·【1/(2n-1)-1/(2n+1)】=(1/2)·【(1-1/3)+(1/3-1/5)+..................+1/(2n-1)-1/(2n+1)】=(1/2)·【1-1/(2n+1)】=n/(2n+1) ,(n∈N+)即:Tn=n/(2n+1) ,(n∈N+)................................................................................................................................
当n≥2时,∴S(n-1)=(a(n-1)+1)�0�5 /4..........②①②两式相减,得:an=Sn-S(n-1)= 1/4·(an�0�5-a(n-1)�0�5)+ 1/2·(an-a(n-1))
化简得:(an+a(n-1))·(an-a(n-1)-2)=0,
由于任意an>0,∴a(n-1)>0,∴an+a(n-1)>0∴(an-a(n-1)-2=0, 即:(an-a(n-1)=2 (n≥2)即数列{an}是以1为首项,以2为公差的等差数列。∴an=1+2(n-1)=2n-1 ,(n∈N+)
.........................................................................................................2、解:由(1)知an=1+2(n-1)=2n-1 ,(n∈N+)
∴bn=1/【an·a(n+1)】=1/【(2n-1)(2n+1)】=(1/2)·【1/(2n-1)-1/(2n+1)】 ,(n∈N+).......................................................∴Tn=b1+b2+...............+bn=(1/2)·(1-1/3)+(1/2)·(1/3-1/5)+..........+=(1/2)·【1/(2n-1)-1/(2n+1)】=(1/2)·【(1-1/3)+(1/3-1/5)+..................+1/(2n-1)-1/(2n+1)】=(1/2)·【1-1/(2n+1)】=n/(2n+1) ,(n∈N+)即:Tn=n/(2n+1) ,(n∈N+)................................................................................................................................
2013-09-01
展开全部
2√Sn=an+1中的an+1是指第n+1项还是(an)+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询