如何理解函数的极限的证明过程

 我来答
跳跳虎的知识分享
2021-10-11 · 学而不思则罔,思而不学则殆
跳跳虎的知识分享
采纳数:64 获赞数:2461

向TA提问 私信TA
展开全部

只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√[2+3x(1)]=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化

=/【√[2+3x(k+1)]+√[2+3x(k)]】>0。

②证明{x(n)}有上界。

x(1)=1<4,

设x(k)<4,则

x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)(分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

asdasd88999
2017-02-13 · TA获得超过3642个赞
知道大有可为答主
回答量:6294
采纳率:0%
帮助的人:1095万
展开全部
题的步骤基本为:
任意给定ε>0,要使|f(x)-A|<ε,(通过解这个不等式,使不等式变为δ1(ε)<x-x0<δ2(ε)为了方便,可让ε值适当减少),取不等式两端的绝对值较小者为δ(ε),于是
对于任意给定的ε>0,都找到δ>0,使当0<|x-x0|<δ时,有|f(x)-A|<ε . 即当x趋近于x0时,函数f(x)有极限A
例如证明f(x)=lnx在x趋于e时,有极限1
证明:任意给定ε>0,要使|lnx-1|<ε,只须-ε<lnx-1<ε,1-ε<lnx<1+ε,e^(1-ε)<x<e^(1+ε), ∴e^(1-ε)-e<x-e<e^(1+ε)-e,取δ(ε)=min(e-e^(1-ε),e^(1+ε)-e)min后面两数是不等式两端的值,但左边的是不等式左端的负值要取绝对值,这两正数取较小的为δ,于是对于任意给定的ε>0,都能找到δ>0,使当0<|x-e|<δ时,有|f(x)-1|<ε . 即当x趋近于e时,函数f(x)有极限1
说明一下:1)取0<|x-e|,是不需要考虑点x=e时的函数值,它可以存在也可不存在,可为A也可不为A。 2)用ε-δ语言证明函数的极限较难,通常对综合大学
数学
等少数专业才要求,我们学习时,老师讲解放前我们(p大)数学专业只要求五分之一的人掌握。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式