2013-09-02
1.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证 为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则 为等差数列;
②若 ,则 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、数列问题解题注意事项
1.证明数列 是等差或等比数列常用定义,即通过证明 或 而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意 与 之间关系的转化。如:
= , = .
4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.
5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.原文链接: http://www.90house.cn/shuxue/zhishi/288.html
2013-09-02
数学是高中学习中的一门关键学科,无论是文科生还是理科生,数学对于他们来说都是富有挑战性的科目.高中阶段,时间紧、任务重,许多同学尽管花了较多时间在数学上但仍然见效甚微。
看着离高考时间越来越近,和理想的成绩越来越远,刷题没效果,心中定有一百个不爽 在不认识肖博数学之前,高考数学对于很多高考生来说都是一场噩梦,既然有梦,何不破解?肖博数学是肖博老师用九年时间精研出的一套完整高中数学教学方案,致力于高中数学题型归类,技巧讲解,本套课程颠覆了传统教学模式与教学风格,完整的课程体系配合独创5秒解题思路,助力考生数学成绩飞速提升,更有数百位同学高考数学成绩130+。用了肖老师的高考数学之等差数列快速解题法,你会发现,其实高考数学题型之等差数列求解也就那么回事。
高中数学,学会巧凑等差数列前n项和公式,解题思路瞬间明朗
在等差数列的一些题型中,需要凑出数列的前n项和公式,特别是在给出两个等差数列前n项和的比值,求数列其中两项的比值这样的题型中,通过凑出前n项和公式会大大提高解题的效率。
仔细分析下面的过程,理解如何一步一步把两个等差数列项之比凑出前11项和之比(红色部分)。
本题借助了等差中项,第n项是第1项和第2n-1项的等差中项,根据等差中项的性质把第n项的比值转化为第1项与第2n-1的和的比值,然后再凑出前2n-1项和公式(红色部分)
。
等差数列是高中阶段极其重要的知识点,近几年也逐渐成为了高考的主要考点之一。高考中所有对等差数列的考察,其实都是在考察高中生对于知识的掌握程度以及创新思维能力。
。
数学是教学中的基础学科,随着学生学龄的增加,数学课程的难度也随之增加.解题较难是当前高中学生面临的主要问题,为了有效改善这一现状,教师在进行高中数学解题教学过程中应转变教学观念、教学方法,突破常规解题方法.在此背景下,构造法在高中数学解题中得到了有效应用.通过构造法的应用可将抽象问题形象化,复杂问题简单化,激发学生的解题热情,增强解题信心,最终提高解题效率.
数列的题目中数据相对比较复杂,但是同学们如果学习了肖老师的方法,就会体验到学霸秒题的技巧, 相信大家看完后对高考数学等差数列有了不少的认识,用最简单的方法帮助高考生圆梦,十年磨一剑,实力今朝现,祝大家金榜题名。